262 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SSPR
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SSPR(UPLO,N,ALPHA,X,INCX,AP)
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       REAL ALPHA
 | |
| *       INTEGER INCX,N
 | |
| *       CHARACTER UPLO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL AP(*),X(*)
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SSPR    performs the symmetric rank 1 operation
 | |
| *>
 | |
| *>    A := alpha*x*x**T + A,
 | |
| *>
 | |
| *> where alpha is a real scalar, x is an n element vector and A is an
 | |
| *> n by n symmetric matrix, supplied in packed form.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>           On entry, UPLO specifies whether the upper or lower
 | |
| *>           triangular part of the matrix A is supplied in the packed
 | |
| *>           array AP as follows:
 | |
| *>
 | |
| *>              UPLO = 'U' or 'u'   The upper triangular part of A is
 | |
| *>                                  supplied in AP.
 | |
| *>
 | |
| *>              UPLO = 'L' or 'l'   The lower triangular part of A is
 | |
| *>                                  supplied in AP.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           On entry, N specifies the order of the matrix A.
 | |
| *>           N must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is REAL
 | |
| *>           On entry, ALPHA specifies the scalar alpha.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is REAL array, dimension at least
 | |
| *>           ( 1 + ( n - 1 )*abs( INCX ) ).
 | |
| *>           Before entry, the incremented array X must contain the n
 | |
| *>           element vector x.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCX
 | |
| *> \verbatim
 | |
| *>          INCX is INTEGER
 | |
| *>           On entry, INCX specifies the increment for the elements of
 | |
| *>           X. INCX must not be zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AP
 | |
| *> \verbatim
 | |
| *>          AP is REAL array, dimension at least
 | |
| *>           ( ( n*( n + 1 ) )/2 ).
 | |
| *>           Before entry with  UPLO = 'U' or 'u', the array AP must
 | |
| *>           contain the upper triangular part of the symmetric matrix
 | |
| *>           packed sequentially, column by column, so that AP( 1 )
 | |
| *>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
 | |
| *>           and a( 2, 2 ) respectively, and so on. On exit, the array
 | |
| *>           AP is overwritten by the upper triangular part of the
 | |
| *>           updated matrix.
 | |
| *>           Before entry with UPLO = 'L' or 'l', the array AP must
 | |
| *>           contain the lower triangular part of the symmetric matrix
 | |
| *>           packed sequentially, column by column, so that AP( 1 )
 | |
| *>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
 | |
| *>           and a( 3, 1 ) respectively, and so on. On exit, the array
 | |
| *>           AP is overwritten by the lower triangular part of the
 | |
| *>           updated matrix.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup single_blas_level2
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Level 2 Blas routine.
 | |
| *>
 | |
| *>  -- Written on 22-October-1986.
 | |
| *>     Jack Dongarra, Argonne National Lab.
 | |
| *>     Jeremy Du Croz, Nag Central Office.
 | |
| *>     Sven Hammarling, Nag Central Office.
 | |
| *>     Richard Hanson, Sandia National Labs.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SSPR(UPLO,N,ALPHA,X,INCX,AP)
 | |
| *
 | |
| *  -- Reference BLAS level2 routine (version 3.7.0) --
 | |
| *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       REAL ALPHA
 | |
|       INTEGER INCX,N
 | |
|       CHARACTER UPLO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL AP(*),X(*)
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL ZERO
 | |
|       PARAMETER (ZERO=0.0E+0)
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       REAL TEMP
 | |
|       INTEGER I,INFO,IX,J,JX,K,KK,KX
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL LSAME
 | |
|       EXTERNAL LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL XERBLA
 | |
| *     ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
 | |
|           INFO = 1
 | |
|       ELSE IF (N.LT.0) THEN
 | |
|           INFO = 2
 | |
|       ELSE IF (INCX.EQ.0) THEN
 | |
|           INFO = 5
 | |
|       END IF
 | |
|       IF (INFO.NE.0) THEN
 | |
|           CALL XERBLA('SSPR  ',INFO)
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
 | |
| *
 | |
| *     Set the start point in X if the increment is not unity.
 | |
| *
 | |
|       IF (INCX.LE.0) THEN
 | |
|           KX = 1 - (N-1)*INCX
 | |
|       ELSE IF (INCX.NE.1) THEN
 | |
|           KX = 1
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of the array AP
 | |
| *     are accessed sequentially with one pass through AP.
 | |
| *
 | |
|       KK = 1
 | |
|       IF (LSAME(UPLO,'U')) THEN
 | |
| *
 | |
| *        Form  A  when upper triangle is stored in AP.
 | |
| *
 | |
|           IF (INCX.EQ.1) THEN
 | |
|               DO 20 J = 1,N
 | |
|                   IF (X(J).NE.ZERO) THEN
 | |
|                       TEMP = ALPHA*X(J)
 | |
|                       K = KK
 | |
|                       DO 10 I = 1,J
 | |
|                           AP(K) = AP(K) + X(I)*TEMP
 | |
|                           K = K + 1
 | |
|    10                 CONTINUE
 | |
|                   END IF
 | |
|                   KK = KK + J
 | |
|    20         CONTINUE
 | |
|           ELSE
 | |
|               JX = KX
 | |
|               DO 40 J = 1,N
 | |
|                   IF (X(JX).NE.ZERO) THEN
 | |
|                       TEMP = ALPHA*X(JX)
 | |
|                       IX = KX
 | |
|                       DO 30 K = KK,KK + J - 1
 | |
|                           AP(K) = AP(K) + X(IX)*TEMP
 | |
|                           IX = IX + INCX
 | |
|    30                 CONTINUE
 | |
|                   END IF
 | |
|                   JX = JX + INCX
 | |
|                   KK = KK + J
 | |
|    40         CONTINUE
 | |
|           END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  A  when lower triangle is stored in AP.
 | |
| *
 | |
|           IF (INCX.EQ.1) THEN
 | |
|               DO 60 J = 1,N
 | |
|                   IF (X(J).NE.ZERO) THEN
 | |
|                       TEMP = ALPHA*X(J)
 | |
|                       K = KK
 | |
|                       DO 50 I = J,N
 | |
|                           AP(K) = AP(K) + X(I)*TEMP
 | |
|                           K = K + 1
 | |
|    50                 CONTINUE
 | |
|                   END IF
 | |
|                   KK = KK + N - J + 1
 | |
|    60         CONTINUE
 | |
|           ELSE
 | |
|               JX = KX
 | |
|               DO 80 J = 1,N
 | |
|                   IF (X(JX).NE.ZERO) THEN
 | |
|                       TEMP = ALPHA*X(JX)
 | |
|                       IX = JX
 | |
|                       DO 70 K = KK,KK + N - J
 | |
|                           AP(K) = AP(K) + X(IX)*TEMP
 | |
|                           IX = IX + INCX
 | |
|    70                 CONTINUE
 | |
|                   END IF
 | |
|                   JX = JX + INCX
 | |
|                   KK = KK + N - J + 1
 | |
|    80         CONTINUE
 | |
|           END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SSPR  .
 | |
| *
 | |
|       END
 |