376 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			376 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SSBMV
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       REAL ALPHA,BETA
 | |
| *       INTEGER INCX,INCY,K,LDA,N
 | |
| *       CHARACTER UPLO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL A(LDA,*),X(*),Y(*)
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SSBMV  performs the matrix-vector  operation
 | |
| *>
 | |
| *>    y := alpha*A*x + beta*y,
 | |
| *>
 | |
| *> where alpha and beta are scalars, x and y are n element vectors and
 | |
| *> A is an n by n symmetric band matrix, with k super-diagonals.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>           On entry, UPLO specifies whether the upper or lower
 | |
| *>           triangular part of the band matrix A is being supplied as
 | |
| *>           follows:
 | |
| *>
 | |
| *>              UPLO = 'U' or 'u'   The upper triangular part of A is
 | |
| *>                                  being supplied.
 | |
| *>
 | |
| *>              UPLO = 'L' or 'l'   The lower triangular part of A is
 | |
| *>                                  being supplied.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           On entry, N specifies the order of the matrix A.
 | |
| *>           N must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>           On entry, K specifies the number of super-diagonals of the
 | |
| *>           matrix A. K must satisfy  0 .le. K.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is REAL
 | |
| *>           On entry, ALPHA specifies the scalar alpha.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension ( LDA, N )
 | |
| *>           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
 | |
| *>           by n part of the array A must contain the upper triangular
 | |
| *>           band part of the symmetric matrix, supplied column by
 | |
| *>           column, with the leading diagonal of the matrix in row
 | |
| *>           ( k + 1 ) of the array, the first super-diagonal starting at
 | |
| *>           position 2 in row k, and so on. The top left k by k triangle
 | |
| *>           of the array A is not referenced.
 | |
| *>           The following program segment will transfer the upper
 | |
| *>           triangular part of a symmetric band matrix from conventional
 | |
| *>           full matrix storage to band storage:
 | |
| *>
 | |
| *>                 DO 20, J = 1, N
 | |
| *>                    M = K + 1 - J
 | |
| *>                    DO 10, I = MAX( 1, J - K ), J
 | |
| *>                       A( M + I, J ) = matrix( I, J )
 | |
| *>              10    CONTINUE
 | |
| *>              20 CONTINUE
 | |
| *>
 | |
| *>           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
 | |
| *>           by n part of the array A must contain the lower triangular
 | |
| *>           band part of the symmetric matrix, supplied column by
 | |
| *>           column, with the leading diagonal of the matrix in row 1 of
 | |
| *>           the array, the first sub-diagonal starting at position 1 in
 | |
| *>           row 2, and so on. The bottom right k by k triangle of the
 | |
| *>           array A is not referenced.
 | |
| *>           The following program segment will transfer the lower
 | |
| *>           triangular part of a symmetric band matrix from conventional
 | |
| *>           full matrix storage to band storage:
 | |
| *>
 | |
| *>                 DO 20, J = 1, N
 | |
| *>                    M = 1 - J
 | |
| *>                    DO 10, I = J, MIN( N, J + K )
 | |
| *>                       A( M + I, J ) = matrix( I, J )
 | |
| *>              10    CONTINUE
 | |
| *>              20 CONTINUE
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>           On entry, LDA specifies the first dimension of A as declared
 | |
| *>           in the calling (sub) program. LDA must be at least
 | |
| *>           ( k + 1 ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is REAL array, dimension at least
 | |
| *>           ( 1 + ( n - 1 )*abs( INCX ) ).
 | |
| *>           Before entry, the incremented array X must contain the
 | |
| *>           vector x.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCX
 | |
| *> \verbatim
 | |
| *>          INCX is INTEGER
 | |
| *>           On entry, INCX specifies the increment for the elements of
 | |
| *>           X. INCX must not be zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is REAL
 | |
| *>           On entry, BETA specifies the scalar beta.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Y
 | |
| *> \verbatim
 | |
| *>          Y is REAL array, dimension at least
 | |
| *>           ( 1 + ( n - 1 )*abs( INCY ) ).
 | |
| *>           Before entry, the incremented array Y must contain the
 | |
| *>           vector y. On exit, Y is overwritten by the updated vector y.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCY
 | |
| *> \verbatim
 | |
| *>          INCY is INTEGER
 | |
| *>           On entry, INCY specifies the increment for the elements of
 | |
| *>           Y. INCY must not be zero.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup single_blas_level2
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Level 2 Blas routine.
 | |
| *>  The vector and matrix arguments are not referenced when N = 0, or M = 0
 | |
| *>
 | |
| *>  -- Written on 22-October-1986.
 | |
| *>     Jack Dongarra, Argonne National Lab.
 | |
| *>     Jeremy Du Croz, Nag Central Office.
 | |
| *>     Sven Hammarling, Nag Central Office.
 | |
| *>     Richard Hanson, Sandia National Labs.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
 | |
| *
 | |
| *  -- Reference BLAS level2 routine (version 3.7.0) --
 | |
| *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       REAL ALPHA,BETA
 | |
|       INTEGER INCX,INCY,K,LDA,N
 | |
|       CHARACTER UPLO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL A(LDA,*),X(*),Y(*)
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL ONE,ZERO
 | |
|       PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       REAL TEMP1,TEMP2
 | |
|       INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL LSAME
 | |
|       EXTERNAL LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC MAX,MIN
 | |
| *     ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
 | |
|           INFO = 1
 | |
|       ELSE IF (N.LT.0) THEN
 | |
|           INFO = 2
 | |
|       ELSE IF (K.LT.0) THEN
 | |
|           INFO = 3
 | |
|       ELSE IF (LDA.LT. (K+1)) THEN
 | |
|           INFO = 6
 | |
|       ELSE IF (INCX.EQ.0) THEN
 | |
|           INFO = 8
 | |
|       ELSE IF (INCY.EQ.0) THEN
 | |
|           INFO = 11
 | |
|       END IF
 | |
|       IF (INFO.NE.0) THEN
 | |
|           CALL XERBLA('SSBMV ',INFO)
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
 | |
| *
 | |
| *     Set up the start points in  X  and  Y.
 | |
| *
 | |
|       IF (INCX.GT.0) THEN
 | |
|           KX = 1
 | |
|       ELSE
 | |
|           KX = 1 - (N-1)*INCX
 | |
|       END IF
 | |
|       IF (INCY.GT.0) THEN
 | |
|           KY = 1
 | |
|       ELSE
 | |
|           KY = 1 - (N-1)*INCY
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of the array A
 | |
| *     are accessed sequentially with one pass through A.
 | |
| *
 | |
| *     First form  y := beta*y.
 | |
| *
 | |
|       IF (BETA.NE.ONE) THEN
 | |
|           IF (INCY.EQ.1) THEN
 | |
|               IF (BETA.EQ.ZERO) THEN
 | |
|                   DO 10 I = 1,N
 | |
|                       Y(I) = ZERO
 | |
|    10             CONTINUE
 | |
|               ELSE
 | |
|                   DO 20 I = 1,N
 | |
|                       Y(I) = BETA*Y(I)
 | |
|    20             CONTINUE
 | |
|               END IF
 | |
|           ELSE
 | |
|               IY = KY
 | |
|               IF (BETA.EQ.ZERO) THEN
 | |
|                   DO 30 I = 1,N
 | |
|                       Y(IY) = ZERO
 | |
|                       IY = IY + INCY
 | |
|    30             CONTINUE
 | |
|               ELSE
 | |
|                   DO 40 I = 1,N
 | |
|                       Y(IY) = BETA*Y(IY)
 | |
|                       IY = IY + INCY
 | |
|    40             CONTINUE
 | |
|               END IF
 | |
|           END IF
 | |
|       END IF
 | |
|       IF (ALPHA.EQ.ZERO) RETURN
 | |
|       IF (LSAME(UPLO,'U')) THEN
 | |
| *
 | |
| *        Form  y  when upper triangle of A is stored.
 | |
| *
 | |
|           KPLUS1 = K + 1
 | |
|           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
 | |
|               DO 60 J = 1,N
 | |
|                   TEMP1 = ALPHA*X(J)
 | |
|                   TEMP2 = ZERO
 | |
|                   L = KPLUS1 - J
 | |
|                   DO 50 I = MAX(1,J-K),J - 1
 | |
|                       Y(I) = Y(I) + TEMP1*A(L+I,J)
 | |
|                       TEMP2 = TEMP2 + A(L+I,J)*X(I)
 | |
|    50             CONTINUE
 | |
|                   Y(J) = Y(J) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
 | |
|    60         CONTINUE
 | |
|           ELSE
 | |
|               JX = KX
 | |
|               JY = KY
 | |
|               DO 80 J = 1,N
 | |
|                   TEMP1 = ALPHA*X(JX)
 | |
|                   TEMP2 = ZERO
 | |
|                   IX = KX
 | |
|                   IY = KY
 | |
|                   L = KPLUS1 - J
 | |
|                   DO 70 I = MAX(1,J-K),J - 1
 | |
|                       Y(IY) = Y(IY) + TEMP1*A(L+I,J)
 | |
|                       TEMP2 = TEMP2 + A(L+I,J)*X(IX)
 | |
|                       IX = IX + INCX
 | |
|                       IY = IY + INCY
 | |
|    70             CONTINUE
 | |
|                   Y(JY) = Y(JY) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
 | |
|                   JX = JX + INCX
 | |
|                   JY = JY + INCY
 | |
|                   IF (J.GT.K) THEN
 | |
|                       KX = KX + INCX
 | |
|                       KY = KY + INCY
 | |
|                   END IF
 | |
|    80         CONTINUE
 | |
|           END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  y  when lower triangle of A is stored.
 | |
| *
 | |
|           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
 | |
|               DO 100 J = 1,N
 | |
|                   TEMP1 = ALPHA*X(J)
 | |
|                   TEMP2 = ZERO
 | |
|                   Y(J) = Y(J) + TEMP1*A(1,J)
 | |
|                   L = 1 - J
 | |
|                   DO 90 I = J + 1,MIN(N,J+K)
 | |
|                       Y(I) = Y(I) + TEMP1*A(L+I,J)
 | |
|                       TEMP2 = TEMP2 + A(L+I,J)*X(I)
 | |
|    90             CONTINUE
 | |
|                   Y(J) = Y(J) + ALPHA*TEMP2
 | |
|   100         CONTINUE
 | |
|           ELSE
 | |
|               JX = KX
 | |
|               JY = KY
 | |
|               DO 120 J = 1,N
 | |
|                   TEMP1 = ALPHA*X(JX)
 | |
|                   TEMP2 = ZERO
 | |
|                   Y(JY) = Y(JY) + TEMP1*A(1,J)
 | |
|                   L = 1 - J
 | |
|                   IX = JX
 | |
|                   IY = JY
 | |
|                   DO 110 I = J + 1,MIN(N,J+K)
 | |
|                       IX = IX + INCX
 | |
|                       IY = IY + INCY
 | |
|                       Y(IY) = Y(IY) + TEMP1*A(L+I,J)
 | |
|                       TEMP2 = TEMP2 + A(L+I,J)*X(IX)
 | |
|   110             CONTINUE
 | |
|                   Y(JY) = Y(JY) + ALPHA*TEMP2
 | |
|                   JX = JX + INCX
 | |
|                   JY = JY + INCY
 | |
|   120         CONTINUE
 | |
|           END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SSBMV .
 | |
| *
 | |
|       END
 |