402 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			402 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DTBSV
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER INCX,K,LDA,N
 | |
| *       CHARACTER DIAG,TRANS,UPLO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION A(LDA,*),X(*)
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DTBSV  solves one of the systems of equations
 | |
| *>
 | |
| *>    A*x = b,   or   A**T*x = b,
 | |
| *>
 | |
| *> where b and x are n element vectors and A is an n by n unit, or
 | |
| *> non-unit, upper or lower triangular band matrix, with ( k + 1 )
 | |
| *> diagonals.
 | |
| *>
 | |
| *> No test for singularity or near-singularity is included in this
 | |
| *> routine. Such tests must be performed before calling this routine.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>           On entry, UPLO specifies whether the matrix is an upper or
 | |
| *>           lower triangular matrix as follows:
 | |
| *>
 | |
| *>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 | |
| *>
 | |
| *>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>           On entry, TRANS specifies the equations to be solved as
 | |
| *>           follows:
 | |
| *>
 | |
| *>              TRANS = 'N' or 'n'   A*x = b.
 | |
| *>
 | |
| *>              TRANS = 'T' or 't'   A**T*x = b.
 | |
| *>
 | |
| *>              TRANS = 'C' or 'c'   A**T*x = b.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIAG
 | |
| *> \verbatim
 | |
| *>          DIAG is CHARACTER*1
 | |
| *>           On entry, DIAG specifies whether or not A is unit
 | |
| *>           triangular as follows:
 | |
| *>
 | |
| *>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 | |
| *>
 | |
| *>              DIAG = 'N' or 'n'   A is not assumed to be unit
 | |
| *>                                  triangular.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           On entry, N specifies the order of the matrix A.
 | |
| *>           N must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>           On entry with UPLO = 'U' or 'u', K specifies the number of
 | |
| *>           super-diagonals of the matrix A.
 | |
| *>           On entry with UPLO = 'L' or 'l', K specifies the number of
 | |
| *>           sub-diagonals of the matrix A.
 | |
| *>           K must satisfy  0 .le. K.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension ( LDA, N )
 | |
| *>           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
 | |
| *>           by n part of the array A must contain the upper triangular
 | |
| *>           band part of the matrix of coefficients, supplied column by
 | |
| *>           column, with the leading diagonal of the matrix in row
 | |
| *>           ( k + 1 ) of the array, the first super-diagonal starting at
 | |
| *>           position 2 in row k, and so on. The top left k by k triangle
 | |
| *>           of the array A is not referenced.
 | |
| *>           The following program segment will transfer an upper
 | |
| *>           triangular band matrix from conventional full matrix storage
 | |
| *>           to band storage:
 | |
| *>
 | |
| *>                 DO 20, J = 1, N
 | |
| *>                    M = K + 1 - J
 | |
| *>                    DO 10, I = MAX( 1, J - K ), J
 | |
| *>                       A( M + I, J ) = matrix( I, J )
 | |
| *>              10    CONTINUE
 | |
| *>              20 CONTINUE
 | |
| *>
 | |
| *>           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
 | |
| *>           by n part of the array A must contain the lower triangular
 | |
| *>           band part of the matrix of coefficients, supplied column by
 | |
| *>           column, with the leading diagonal of the matrix in row 1 of
 | |
| *>           the array, the first sub-diagonal starting at position 1 in
 | |
| *>           row 2, and so on. The bottom right k by k triangle of the
 | |
| *>           array A is not referenced.
 | |
| *>           The following program segment will transfer a lower
 | |
| *>           triangular band matrix from conventional full matrix storage
 | |
| *>           to band storage:
 | |
| *>
 | |
| *>                 DO 20, J = 1, N
 | |
| *>                    M = 1 - J
 | |
| *>                    DO 10, I = J, MIN( N, J + K )
 | |
| *>                       A( M + I, J ) = matrix( I, J )
 | |
| *>              10    CONTINUE
 | |
| *>              20 CONTINUE
 | |
| *>
 | |
| *>           Note that when DIAG = 'U' or 'u' the elements of the array A
 | |
| *>           corresponding to the diagonal elements of the matrix are not
 | |
| *>           referenced, but are assumed to be unity.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>           On entry, LDA specifies the first dimension of A as declared
 | |
| *>           in the calling (sub) program. LDA must be at least
 | |
| *>           ( k + 1 ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] X
 | |
| *> \verbatim
 | |
| *>          X is DOUBLE PRECISION array, dimension at least
 | |
| *>           ( 1 + ( n - 1 )*abs( INCX ) ).
 | |
| *>           Before entry, the incremented array X must contain the n
 | |
| *>           element right-hand side vector b. On exit, X is overwritten
 | |
| *>           with the solution vector x.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCX
 | |
| *> \verbatim
 | |
| *>          INCX is INTEGER
 | |
| *>           On entry, INCX specifies the increment for the elements of
 | |
| *>           X. INCX must not be zero.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup double_blas_level2
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Level 2 Blas routine.
 | |
| *>
 | |
| *>  -- Written on 22-October-1986.
 | |
| *>     Jack Dongarra, Argonne National Lab.
 | |
| *>     Jeremy Du Croz, Nag Central Office.
 | |
| *>     Sven Hammarling, Nag Central Office.
 | |
| *>     Richard Hanson, Sandia National Labs.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
 | |
| *
 | |
| *  -- Reference BLAS level2 routine (version 3.7.0) --
 | |
| *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER INCX,K,LDA,N
 | |
|       CHARACTER DIAG,TRANS,UPLO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION A(LDA,*),X(*)
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION ZERO
 | |
|       PARAMETER (ZERO=0.0D+0)
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       DOUBLE PRECISION TEMP
 | |
|       INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
 | |
|       LOGICAL NOUNIT
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL LSAME
 | |
|       EXTERNAL LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC MAX,MIN
 | |
| *     ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
 | |
|           INFO = 1
 | |
|       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
 | |
|      +         .NOT.LSAME(TRANS,'C')) THEN
 | |
|           INFO = 2
 | |
|       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
 | |
|           INFO = 3
 | |
|       ELSE IF (N.LT.0) THEN
 | |
|           INFO = 4
 | |
|       ELSE IF (K.LT.0) THEN
 | |
|           INFO = 5
 | |
|       ELSE IF (LDA.LT. (K+1)) THEN
 | |
|           INFO = 7
 | |
|       ELSE IF (INCX.EQ.0) THEN
 | |
|           INFO = 9
 | |
|       END IF
 | |
|       IF (INFO.NE.0) THEN
 | |
|           CALL XERBLA('DTBSV ',INFO)
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF (N.EQ.0) RETURN
 | |
| *
 | |
|       NOUNIT = LSAME(DIAG,'N')
 | |
| *
 | |
| *     Set up the start point in X if the increment is not unity. This
 | |
| *     will be  ( N - 1 )*INCX  too small for descending loops.
 | |
| *
 | |
|       IF (INCX.LE.0) THEN
 | |
|           KX = 1 - (N-1)*INCX
 | |
|       ELSE IF (INCX.NE.1) THEN
 | |
|           KX = 1
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of A are
 | |
| *     accessed by sequentially with one pass through A.
 | |
| *
 | |
|       IF (LSAME(TRANS,'N')) THEN
 | |
| *
 | |
| *        Form  x := inv( A )*x.
 | |
| *
 | |
|           IF (LSAME(UPLO,'U')) THEN
 | |
|               KPLUS1 = K + 1
 | |
|               IF (INCX.EQ.1) THEN
 | |
|                   DO 20 J = N,1,-1
 | |
|                       IF (X(J).NE.ZERO) THEN
 | |
|                           L = KPLUS1 - J
 | |
|                           IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J)
 | |
|                           TEMP = X(J)
 | |
|                           DO 10 I = J - 1,MAX(1,J-K),-1
 | |
|                               X(I) = X(I) - TEMP*A(L+I,J)
 | |
|    10                     CONTINUE
 | |
|                       END IF
 | |
|    20             CONTINUE
 | |
|               ELSE
 | |
|                   KX = KX + (N-1)*INCX
 | |
|                   JX = KX
 | |
|                   DO 40 J = N,1,-1
 | |
|                       KX = KX - INCX
 | |
|                       IF (X(JX).NE.ZERO) THEN
 | |
|                           IX = KX
 | |
|                           L = KPLUS1 - J
 | |
|                           IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J)
 | |
|                           TEMP = X(JX)
 | |
|                           DO 30 I = J - 1,MAX(1,J-K),-1
 | |
|                               X(IX) = X(IX) - TEMP*A(L+I,J)
 | |
|                               IX = IX - INCX
 | |
|    30                     CONTINUE
 | |
|                       END IF
 | |
|                       JX = JX - INCX
 | |
|    40             CONTINUE
 | |
|               END IF
 | |
|           ELSE
 | |
|               IF (INCX.EQ.1) THEN
 | |
|                   DO 60 J = 1,N
 | |
|                       IF (X(J).NE.ZERO) THEN
 | |
|                           L = 1 - J
 | |
|                           IF (NOUNIT) X(J) = X(J)/A(1,J)
 | |
|                           TEMP = X(J)
 | |
|                           DO 50 I = J + 1,MIN(N,J+K)
 | |
|                               X(I) = X(I) - TEMP*A(L+I,J)
 | |
|    50                     CONTINUE
 | |
|                       END IF
 | |
|    60             CONTINUE
 | |
|               ELSE
 | |
|                   JX = KX
 | |
|                   DO 80 J = 1,N
 | |
|                       KX = KX + INCX
 | |
|                       IF (X(JX).NE.ZERO) THEN
 | |
|                           IX = KX
 | |
|                           L = 1 - J
 | |
|                           IF (NOUNIT) X(JX) = X(JX)/A(1,J)
 | |
|                           TEMP = X(JX)
 | |
|                           DO 70 I = J + 1,MIN(N,J+K)
 | |
|                               X(IX) = X(IX) - TEMP*A(L+I,J)
 | |
|                               IX = IX + INCX
 | |
|    70                     CONTINUE
 | |
|                       END IF
 | |
|                       JX = JX + INCX
 | |
|    80             CONTINUE
 | |
|               END IF
 | |
|           END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  x := inv( A**T)*x.
 | |
| *
 | |
|           IF (LSAME(UPLO,'U')) THEN
 | |
|               KPLUS1 = K + 1
 | |
|               IF (INCX.EQ.1) THEN
 | |
|                   DO 100 J = 1,N
 | |
|                       TEMP = X(J)
 | |
|                       L = KPLUS1 - J
 | |
|                       DO 90 I = MAX(1,J-K),J - 1
 | |
|                           TEMP = TEMP - A(L+I,J)*X(I)
 | |
|    90                 CONTINUE
 | |
|                       IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
 | |
|                       X(J) = TEMP
 | |
|   100             CONTINUE
 | |
|               ELSE
 | |
|                   JX = KX
 | |
|                   DO 120 J = 1,N
 | |
|                       TEMP = X(JX)
 | |
|                       IX = KX
 | |
|                       L = KPLUS1 - J
 | |
|                       DO 110 I = MAX(1,J-K),J - 1
 | |
|                           TEMP = TEMP - A(L+I,J)*X(IX)
 | |
|                           IX = IX + INCX
 | |
|   110                 CONTINUE
 | |
|                       IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
 | |
|                       X(JX) = TEMP
 | |
|                       JX = JX + INCX
 | |
|                       IF (J.GT.K) KX = KX + INCX
 | |
|   120             CONTINUE
 | |
|               END IF
 | |
|           ELSE
 | |
|               IF (INCX.EQ.1) THEN
 | |
|                   DO 140 J = N,1,-1
 | |
|                       TEMP = X(J)
 | |
|                       L = 1 - J
 | |
|                       DO 130 I = MIN(N,J+K),J + 1,-1
 | |
|                           TEMP = TEMP - A(L+I,J)*X(I)
 | |
|   130                 CONTINUE
 | |
|                       IF (NOUNIT) TEMP = TEMP/A(1,J)
 | |
|                       X(J) = TEMP
 | |
|   140             CONTINUE
 | |
|               ELSE
 | |
|                   KX = KX + (N-1)*INCX
 | |
|                   JX = KX
 | |
|                   DO 160 J = N,1,-1
 | |
|                       TEMP = X(JX)
 | |
|                       IX = KX
 | |
|                       L = 1 - J
 | |
|                       DO 150 I = MIN(N,J+K),J + 1,-1
 | |
|                           TEMP = TEMP - A(L+I,J)*X(IX)
 | |
|                           IX = IX - INCX
 | |
|   150                 CONTINUE
 | |
|                       IF (NOUNIT) TEMP = TEMP/A(1,J)
 | |
|                       X(JX) = TEMP
 | |
|                       JX = JX - INCX
 | |
|                       IF ((N-J).GE.K) KX = KX - INCX
 | |
|   160             CONTINUE
 | |
|               END IF
 | |
|           END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DTBSV .
 | |
| *
 | |
|       END
 |