263 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			263 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
|       SUBROUTINE DSPMVF( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY )
 | |
| *     .. Scalar Arguments ..
 | |
|       DOUBLE PRECISION   ALPHA, BETA
 | |
|       INTEGER            INCX, INCY, N
 | |
|       CHARACTER*1        UPLO
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   AP( * ), X( * ), Y( * )
 | |
| *     ..
 | |
| *
 | |
| *  Purpose
 | |
| *  =======
 | |
| *
 | |
| *  DSPMV  performs the matrix-vector operation
 | |
| *
 | |
| *     y := alpha*A*x + beta*y,
 | |
| *
 | |
| *  where alpha and beta are scalars, x and y are n element vectors and
 | |
| *  A is an n by n symmetric matrix, supplied in packed form.
 | |
| *
 | |
| *  Parameters
 | |
| *  ==========
 | |
| *
 | |
| *  UPLO   - CHARACTER*1.
 | |
| *           On entry, UPLO specifies whether the upper or lower
 | |
| *           triangular part of the matrix A is supplied in the packed
 | |
| *           array AP as follows:
 | |
| *
 | |
| *              UPLO = 'U' or 'u'   The upper triangular part of A is
 | |
| *                                  supplied in AP.
 | |
| *
 | |
| *              UPLO = 'L' or 'l'   The lower triangular part of A is
 | |
| *                                  supplied in AP.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  N      - INTEGER.
 | |
| *           On entry, N specifies the order of the matrix A.
 | |
| *           N must be at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  ALPHA  - DOUBLE PRECISION.
 | |
| *           On entry, ALPHA specifies the scalar alpha.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  AP     - DOUBLE PRECISION array of DIMENSION at least
 | |
| *           ( ( n*( n + 1 ) )/2 ).
 | |
| *           Before entry with UPLO = 'U' or 'u', the array AP must
 | |
| *           contain the upper triangular part of the symmetric matrix
 | |
| *           packed sequentially, column by column, so that AP( 1 )
 | |
| *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
 | |
| *           and a( 2, 2 ) respectively, and so on.
 | |
| *           Before entry with UPLO = 'L' or 'l', the array AP must
 | |
| *           contain the lower triangular part of the symmetric matrix
 | |
| *           packed sequentially, column by column, so that AP( 1 )
 | |
| *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
 | |
| *           and a( 3, 1 ) respectively, and so on.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  X      - DOUBLE PRECISION array of dimension at least
 | |
| *           ( 1 + ( n - 1 )*abs( INCX ) ).
 | |
| *           Before entry, the incremented array X must contain the n
 | |
| *           element vector x.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  INCX   - INTEGER.
 | |
| *           On entry, INCX specifies the increment for the elements of
 | |
| *           X. INCX must not be zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  BETA   - DOUBLE PRECISION.
 | |
| *           On entry, BETA specifies the scalar beta. When BETA is
 | |
| *           supplied as zero then Y need not be set on input.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  Y      - DOUBLE PRECISION array of dimension at least
 | |
| *           ( 1 + ( n - 1 )*abs( INCY ) ).
 | |
| *           Before entry, the incremented array Y must contain the n
 | |
| *           element vector y. On exit, Y is overwritten by the updated
 | |
| *           vector y.
 | |
| *
 | |
| *  INCY   - INTEGER.
 | |
| *           On entry, INCY specifies the increment for the elements of
 | |
| *           Y. INCY must not be zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *
 | |
| *  Level 2 Blas routine.
 | |
| *
 | |
| *  -- Written on 22-October-1986.
 | |
| *     Jack Dongarra, Argonne National Lab.
 | |
| *     Jeremy Du Croz, Nag Central Office.
 | |
| *     Sven Hammarling, Nag Central Office.
 | |
| *     Richard Hanson, Sandia National Labs.
 | |
| *
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE         , ZERO
 | |
|       PARAMETER        ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     .. Local Scalars ..
 | |
|       DOUBLE PRECISION   TEMP1, TEMP2
 | |
|       INTEGER            I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF     ( .NOT.LSAME( UPLO, 'U' ).AND.
 | |
|      $         .NOT.LSAME( UPLO, 'L' )      )THEN
 | |
|          INFO = 1
 | |
|       ELSE IF( N.LT.0 )THEN
 | |
|          INFO = 2
 | |
|       ELSE IF( INCX.EQ.0 )THEN
 | |
|          INFO = 6
 | |
|       ELSE IF( INCY.EQ.0 )THEN
 | |
|          INFO = 9
 | |
|       END IF
 | |
|       IF( INFO.NE.0 )THEN
 | |
|          CALL XERBLA( 'DSPMV ', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Set up the start points in  X  and  Y.
 | |
| *
 | |
|       IF( INCX.GT.0 )THEN
 | |
|          KX = 1
 | |
|       ELSE
 | |
|          KX = 1 - ( N - 1 )*INCX
 | |
|       END IF
 | |
|       IF( INCY.GT.0 )THEN
 | |
|          KY = 1
 | |
|       ELSE
 | |
|          KY = 1 - ( N - 1 )*INCY
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of the array AP
 | |
| *     are accessed sequentially with one pass through AP.
 | |
| *
 | |
| *     First form  y := beta*y.
 | |
| *
 | |
|       IF( BETA.NE.ONE )THEN
 | |
|          IF( INCY.EQ.1 )THEN
 | |
|             IF( BETA.EQ.ZERO )THEN
 | |
|                DO 10, I = 1, N
 | |
|                   Y( I ) = ZERO
 | |
|    10          CONTINUE
 | |
|             ELSE
 | |
|                DO 20, I = 1, N
 | |
|                   Y( I ) = BETA*Y( I )
 | |
|    20          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IY = KY
 | |
|             IF( BETA.EQ.ZERO )THEN
 | |
|                DO 30, I = 1, N
 | |
|                   Y( IY ) = ZERO
 | |
|                   IY      = IY   + INCY
 | |
|    30          CONTINUE
 | |
|             ELSE
 | |
|                DO 40, I = 1, N
 | |
|                   Y( IY ) = BETA*Y( IY )
 | |
|                   IY      = IY           + INCY
 | |
|    40          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( ALPHA.EQ.ZERO )
 | |
|      $   RETURN
 | |
|       KK = 1
 | |
|       IF( LSAME( UPLO, 'U' ) )THEN
 | |
| *
 | |
| *        Form  y  when AP contains the upper triangle.
 | |
| *
 | |
|          IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
 | |
|             DO 60, J = 1, N
 | |
|                TEMP1 = ALPHA*X( J )
 | |
|                TEMP2 = ZERO
 | |
|                K     = KK
 | |
|                DO 50, I = 1, J - 1
 | |
|                   Y( I ) = Y( I ) + TEMP1*AP( K )
 | |
|                   TEMP2  = TEMP2  + AP( K )*X( I )
 | |
|                   K      = K      + 1
 | |
|    50          CONTINUE
 | |
|                Y( J ) = Y( J ) + TEMP1*AP( KK + J - 1 ) + ALPHA*TEMP2
 | |
|                KK     = KK     + J
 | |
|    60       CONTINUE
 | |
|          ELSE
 | |
|             JX = KX
 | |
|             JY = KY
 | |
|             DO 80, J = 1, N
 | |
|                TEMP1 = ALPHA*X( JX )
 | |
|                TEMP2 = ZERO
 | |
|                IX    = KX
 | |
|                IY    = KY
 | |
|                DO 70, K = KK, KK + J - 2
 | |
|                   Y( IY ) = Y( IY ) + TEMP1*AP( K )
 | |
|                   TEMP2   = TEMP2   + AP( K )*X( IX )
 | |
|                   IX      = IX      + INCX
 | |
|                   IY      = IY      + INCY
 | |
|    70          CONTINUE
 | |
|                Y( JY ) = Y( JY ) + TEMP1*AP( KK + J - 1 ) + ALPHA*TEMP2
 | |
|                JX      = JX      + INCX
 | |
|                JY      = JY      + INCY
 | |
|                KK      = KK      + J
 | |
|    80       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  y  when AP contains the lower triangle.
 | |
| *
 | |
|          IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
 | |
|             DO 100, J = 1, N
 | |
|                TEMP1  = ALPHA*X( J )
 | |
|                TEMP2  = ZERO
 | |
|                Y( J ) = Y( J )       + TEMP1*AP( KK )
 | |
|                K      = KK           + 1
 | |
|                DO 90, I = J + 1, N
 | |
|                   Y( I ) = Y( I ) + TEMP1*AP( K )
 | |
|                   TEMP2  = TEMP2  + AP( K )*X( I )
 | |
|                   K      = K      + 1
 | |
|    90          CONTINUE
 | |
|                Y( J ) = Y( J ) + ALPHA*TEMP2
 | |
|                KK     = KK     + ( N - J + 1 )
 | |
|   100       CONTINUE
 | |
|          ELSE
 | |
|             JX = KX
 | |
|             JY = KY
 | |
|             DO 120, J = 1, N
 | |
|                TEMP1   = ALPHA*X( JX )
 | |
|                TEMP2   = ZERO
 | |
|                Y( JY ) = Y( JY )       + TEMP1*AP( KK )
 | |
|                IX      = JX
 | |
|                IY      = JY
 | |
|                DO 110, K = KK + 1, KK + N - J
 | |
|                   IX      = IX      + INCX
 | |
|                   IY      = IY      + INCY
 | |
|                   Y( IY ) = Y( IY ) + TEMP1*AP( K )
 | |
|                   TEMP2   = TEMP2   + AP( K )*X( IX )
 | |
|   110          CONTINUE
 | |
|                Y( JY ) = Y( JY ) + ALPHA*TEMP2
 | |
|                JX      = JX      + INCX
 | |
|                JY      = JY      + INCY
 | |
|                KK      = KK      + ( N - J + 1 )
 | |
|   120       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DSPMV .
 | |
| *
 | |
|       END
 |