334 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			334 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> SGTSV computes the solution to system of linear equations A * X = B for GT matrices <b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SGTSV + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgtsv.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgtsv.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgtsv.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDB, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               B( LDB, * ), D( * ), DL( * ), DU( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGTSV  solves the equation
 | 
						|
*>
 | 
						|
*>    A*X = B,
 | 
						|
*>
 | 
						|
*> where A is an n by n tridiagonal matrix, by Gaussian elimination with
 | 
						|
*> partial pivoting.
 | 
						|
*>
 | 
						|
*> Note that the equation  A**T*X = B  may be solved by interchanging the
 | 
						|
*> order of the arguments DU and DL.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrix B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] DL
 | 
						|
*> \verbatim
 | 
						|
*>          DL is REAL array, dimension (N-1)
 | 
						|
*>          On entry, DL must contain the (n-1) sub-diagonal elements of
 | 
						|
*>          A.
 | 
						|
*>
 | 
						|
*>          On exit, DL is overwritten by the (n-2) elements of the
 | 
						|
*>          second super-diagonal of the upper triangular matrix U from
 | 
						|
*>          the LU factorization of A, in DL(1), ..., DL(n-2).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>          On entry, D must contain the diagonal elements of A.
 | 
						|
*>
 | 
						|
*>          On exit, D is overwritten by the n diagonal elements of U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] DU
 | 
						|
*> \verbatim
 | 
						|
*>          DU is REAL array, dimension (N-1)
 | 
						|
*>          On entry, DU must contain the (n-1) super-diagonal elements
 | 
						|
*>          of A.
 | 
						|
*>
 | 
						|
*>          On exit, DU is overwritten by the (n-1) elements of the first
 | 
						|
*>          super-diagonal of U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the N by NRHS matrix of right hand side matrix B.
 | 
						|
*>          On exit, if INFO = 0, the N by NRHS solution matrix X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0: if INFO = i, U(i,i) is exactly zero, and the solution
 | 
						|
*>               has not been computed.  The factorization has not been
 | 
						|
*>               completed unless i = N.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup realGTsolve
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDB, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               B( LDB, * ), D( * ), DL( * ), DU( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J
 | 
						|
      REAL               FACT, TEMP
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( N.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SGTSV ', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( NRHS.EQ.1 ) THEN
 | 
						|
         DO 10 I = 1, N - 2
 | 
						|
            IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
 | 
						|
*
 | 
						|
*              No row interchange required
 | 
						|
*
 | 
						|
               IF( D( I ).NE.ZERO ) THEN
 | 
						|
                  FACT = DL( I ) / D( I )
 | 
						|
                  D( I+1 ) = D( I+1 ) - FACT*DU( I )
 | 
						|
                  B( I+1, 1 ) = B( I+1, 1 ) - FACT*B( I, 1 )
 | 
						|
               ELSE
 | 
						|
                  INFO = I
 | 
						|
                  RETURN
 | 
						|
               END IF
 | 
						|
               DL( I ) = ZERO
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Interchange rows I and I+1
 | 
						|
*
 | 
						|
               FACT = D( I ) / DL( I )
 | 
						|
               D( I ) = DL( I )
 | 
						|
               TEMP = D( I+1 )
 | 
						|
               D( I+1 ) = DU( I ) - FACT*TEMP
 | 
						|
               DL( I ) = DU( I+1 )
 | 
						|
               DU( I+1 ) = -FACT*DL( I )
 | 
						|
               DU( I ) = TEMP
 | 
						|
               TEMP = B( I, 1 )
 | 
						|
               B( I, 1 ) = B( I+1, 1 )
 | 
						|
               B( I+1, 1 ) = TEMP - FACT*B( I+1, 1 )
 | 
						|
            END IF
 | 
						|
   10    CONTINUE
 | 
						|
         IF( N.GT.1 ) THEN
 | 
						|
            I = N - 1
 | 
						|
            IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
 | 
						|
               IF( D( I ).NE.ZERO ) THEN
 | 
						|
                  FACT = DL( I ) / D( I )
 | 
						|
                  D( I+1 ) = D( I+1 ) - FACT*DU( I )
 | 
						|
                  B( I+1, 1 ) = B( I+1, 1 ) - FACT*B( I, 1 )
 | 
						|
               ELSE
 | 
						|
                  INFO = I
 | 
						|
                  RETURN
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
               FACT = D( I ) / DL( I )
 | 
						|
               D( I ) = DL( I )
 | 
						|
               TEMP = D( I+1 )
 | 
						|
               D( I+1 ) = DU( I ) - FACT*TEMP
 | 
						|
               DU( I ) = TEMP
 | 
						|
               TEMP = B( I, 1 )
 | 
						|
               B( I, 1 ) = B( I+1, 1 )
 | 
						|
               B( I+1, 1 ) = TEMP - FACT*B( I+1, 1 )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         IF( D( N ).EQ.ZERO ) THEN
 | 
						|
            INFO = N
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
         DO 40 I = 1, N - 2
 | 
						|
            IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
 | 
						|
*
 | 
						|
*              No row interchange required
 | 
						|
*
 | 
						|
               IF( D( I ).NE.ZERO ) THEN
 | 
						|
                  FACT = DL( I ) / D( I )
 | 
						|
                  D( I+1 ) = D( I+1 ) - FACT*DU( I )
 | 
						|
                  DO 20 J = 1, NRHS
 | 
						|
                     B( I+1, J ) = B( I+1, J ) - FACT*B( I, J )
 | 
						|
   20             CONTINUE
 | 
						|
               ELSE
 | 
						|
                  INFO = I
 | 
						|
                  RETURN
 | 
						|
               END IF
 | 
						|
               DL( I ) = ZERO
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Interchange rows I and I+1
 | 
						|
*
 | 
						|
               FACT = D( I ) / DL( I )
 | 
						|
               D( I ) = DL( I )
 | 
						|
               TEMP = D( I+1 )
 | 
						|
               D( I+1 ) = DU( I ) - FACT*TEMP
 | 
						|
               DL( I ) = DU( I+1 )
 | 
						|
               DU( I+1 ) = -FACT*DL( I )
 | 
						|
               DU( I ) = TEMP
 | 
						|
               DO 30 J = 1, NRHS
 | 
						|
                  TEMP = B( I, J )
 | 
						|
                  B( I, J ) = B( I+1, J )
 | 
						|
                  B( I+1, J ) = TEMP - FACT*B( I+1, J )
 | 
						|
   30          CONTINUE
 | 
						|
            END IF
 | 
						|
   40    CONTINUE
 | 
						|
         IF( N.GT.1 ) THEN
 | 
						|
            I = N - 1
 | 
						|
            IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
 | 
						|
               IF( D( I ).NE.ZERO ) THEN
 | 
						|
                  FACT = DL( I ) / D( I )
 | 
						|
                  D( I+1 ) = D( I+1 ) - FACT*DU( I )
 | 
						|
                  DO 50 J = 1, NRHS
 | 
						|
                     B( I+1, J ) = B( I+1, J ) - FACT*B( I, J )
 | 
						|
   50             CONTINUE
 | 
						|
               ELSE
 | 
						|
                  INFO = I
 | 
						|
                  RETURN
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
               FACT = D( I ) / DL( I )
 | 
						|
               D( I ) = DL( I )
 | 
						|
               TEMP = D( I+1 )
 | 
						|
               D( I+1 ) = DU( I ) - FACT*TEMP
 | 
						|
               DU( I ) = TEMP
 | 
						|
               DO 60 J = 1, NRHS
 | 
						|
                  TEMP = B( I, J )
 | 
						|
                  B( I, J ) = B( I+1, J )
 | 
						|
                  B( I+1, J ) = TEMP - FACT*B( I+1, J )
 | 
						|
   60          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         IF( D( N ).EQ.ZERO ) THEN
 | 
						|
            INFO = N
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Back solve with the matrix U from the factorization.
 | 
						|
*
 | 
						|
      IF( NRHS.LE.2 ) THEN
 | 
						|
         J = 1
 | 
						|
   70    CONTINUE
 | 
						|
         B( N, J ) = B( N, J ) / D( N )
 | 
						|
         IF( N.GT.1 )
 | 
						|
     $      B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) / D( N-1 )
 | 
						|
         DO 80 I = N - 2, 1, -1
 | 
						|
            B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DL( I )*
 | 
						|
     $                  B( I+2, J ) ) / D( I )
 | 
						|
   80    CONTINUE
 | 
						|
         IF( J.LT.NRHS ) THEN
 | 
						|
            J = J + 1
 | 
						|
            GO TO 70
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
         DO 100 J = 1, NRHS
 | 
						|
            B( N, J ) = B( N, J ) / D( N )
 | 
						|
            IF( N.GT.1 )
 | 
						|
     $         B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
 | 
						|
     $                       D( N-1 )
 | 
						|
            DO 90 I = N - 2, 1, -1
 | 
						|
               B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DL( I )*
 | 
						|
     $                     B( I+2, J ) ) / D( I )
 | 
						|
   90       CONTINUE
 | 
						|
  100    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGTSV
 | 
						|
*
 | 
						|
      END
 |