521 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			521 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DGGSVP
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DGGSVP + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggsvp.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggsvp.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggsvp.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
 | 
						|
*                          TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
 | 
						|
*                          IWORK, TAU, WORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBQ, JOBU, JOBV
 | 
						|
*       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
 | 
						|
*       DOUBLE PRECISION   TOLA, TOLB
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | 
						|
*      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DGGSVP computes orthogonal matrices U, V and Q such that
 | 
						|
*>
 | 
						|
*>                    N-K-L  K    L
 | 
						|
*>  U**T*A*Q =     K ( 0    A12  A13 )  if M-K-L >= 0;
 | 
						|
*>                 L ( 0     0   A23 )
 | 
						|
*>             M-K-L ( 0     0    0  )
 | 
						|
*>
 | 
						|
*>                  N-K-L  K    L
 | 
						|
*>         =     K ( 0    A12  A13 )  if M-K-L < 0;
 | 
						|
*>             M-K ( 0     0   A23 )
 | 
						|
*>
 | 
						|
*>                  N-K-L  K    L
 | 
						|
*>  V**T*B*Q =   L ( 0     0   B13 )
 | 
						|
*>             P-L ( 0     0    0  )
 | 
						|
*>
 | 
						|
*> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
 | 
						|
*> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
 | 
						|
*> otherwise A23 is (M-K)-by-L upper trapezoidal.  K+L = the effective
 | 
						|
*> numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T. 
 | 
						|
*>
 | 
						|
*> This decomposition is the preprocessing step for computing the
 | 
						|
*> Generalized Singular Value Decomposition (GSVD), see subroutine
 | 
						|
*> DGGSVD.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBU
 | 
						|
*> \verbatim
 | 
						|
*>          JOBU is CHARACTER*1
 | 
						|
*>          = 'U':  Orthogonal matrix U is computed;
 | 
						|
*>          = 'N':  U is not computed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] JOBV
 | 
						|
*> \verbatim
 | 
						|
*>          JOBV is CHARACTER*1
 | 
						|
*>          = 'V':  Orthogonal matrix V is computed;
 | 
						|
*>          = 'N':  V is not computed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] JOBQ
 | 
						|
*> \verbatim
 | 
						|
*>          JOBQ is CHARACTER*1
 | 
						|
*>          = 'Q':  Orthogonal matrix Q is computed;
 | 
						|
*>          = 'N':  Q is not computed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] P
 | 
						|
*> \verbatim
 | 
						|
*>          P is INTEGER
 | 
						|
*>          The number of rows of the matrix B.  P >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrices A and B.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>          On entry, the M-by-N matrix A.
 | 
						|
*>          On exit, A contains the triangular (or trapezoidal) matrix
 | 
						|
*>          described in the Purpose section.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (LDB,N)
 | 
						|
*>          On entry, the P-by-N matrix B.
 | 
						|
*>          On exit, B contains the triangular matrix described in
 | 
						|
*>          the Purpose section.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B. LDB >= max(1,P).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TOLA
 | 
						|
*> \verbatim
 | 
						|
*>          TOLA is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TOLB
 | 
						|
*> \verbatim
 | 
						|
*>          TOLB is DOUBLE PRECISION
 | 
						|
*>
 | 
						|
*>          TOLA and TOLB are the thresholds to determine the effective
 | 
						|
*>          numerical rank of matrix B and a subblock of A. Generally,
 | 
						|
*>          they are set to
 | 
						|
*>             TOLA = MAX(M,N)*norm(A)*MACHEPS,
 | 
						|
*>             TOLB = MAX(P,N)*norm(B)*MACHEPS.
 | 
						|
*>          The size of TOLA and TOLB may affect the size of backward
 | 
						|
*>          errors of the decomposition.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] L
 | 
						|
*> \verbatim
 | 
						|
*>          L is INTEGER
 | 
						|
*>
 | 
						|
*>          On exit, K and L specify the dimension of the subblocks
 | 
						|
*>          described in Purpose section.
 | 
						|
*>          K + L = effective numerical rank of (A**T,B**T)**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is DOUBLE PRECISION array, dimension (LDU,M)
 | 
						|
*>          If JOBU = 'U', U contains the orthogonal matrix U.
 | 
						|
*>          If JOBU = 'N', U is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDU
 | 
						|
*> \verbatim
 | 
						|
*>          LDU is INTEGER
 | 
						|
*>          The leading dimension of the array U. LDU >= max(1,M) if
 | 
						|
*>          JOBU = 'U'; LDU >= 1 otherwise.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is DOUBLE PRECISION array, dimension (LDV,P)
 | 
						|
*>          If JOBV = 'V', V contains the orthogonal matrix V.
 | 
						|
*>          If JOBV = 'N', V is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDV
 | 
						|
*> \verbatim
 | 
						|
*>          LDV is INTEGER
 | 
						|
*>          The leading dimension of the array V. LDV >= max(1,P) if
 | 
						|
*>          JOBV = 'V'; LDV >= 1 otherwise.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
 | 
						|
*>          If JOBQ = 'Q', Q contains the orthogonal matrix Q.
 | 
						|
*>          If JOBQ = 'N', Q is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>          The leading dimension of the array Q. LDQ >= max(1,N) if
 | 
						|
*>          JOBQ = 'Q'; LDQ >= 1 otherwise.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is DOUBLE PRECISION array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (max(3*N,M,P))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*>  The subroutine uses LAPACK subroutine DGEQPF for the QR factorization
 | 
						|
*>  with column pivoting to detect the effective numerical rank of the
 | 
						|
*>  a matrix. It may be replaced by a better rank determination strategy.
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
 | 
						|
     $                   TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
 | 
						|
     $                   IWORK, TAU, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBQ, JOBU, JOBV
 | 
						|
      INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
 | 
						|
      DOUBLE PRECISION   TOLA, TOLB
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | 
						|
     $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            FORWRD, WANTQ, WANTU, WANTV
 | 
						|
      INTEGER            I, J
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEQPF, DGEQR2, DGERQ2, DLACPY, DLAPMT, DLASET,
 | 
						|
     $                   DORG2R, DORM2R, DORMR2, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters
 | 
						|
*
 | 
						|
      WANTU = LSAME( JOBU, 'U' )
 | 
						|
      WANTV = LSAME( JOBV, 'V' )
 | 
						|
      WANTQ = LSAME( JOBQ, 'Q' )
 | 
						|
      FORWRD = .TRUE.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( M.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( P.LT.0 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
 | 
						|
         INFO = -10
 | 
						|
      ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
 | 
						|
         INFO = -16
 | 
						|
      ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
 | 
						|
         INFO = -18
 | 
						|
      ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
 | 
						|
         INFO = -20
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DGGSVP', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     QR with column pivoting of B: B*P = V*( S11 S12 )
 | 
						|
*                                           (  0   0  )
 | 
						|
*
 | 
						|
      DO 10 I = 1, N
 | 
						|
         IWORK( I ) = 0
 | 
						|
   10 CONTINUE
 | 
						|
      CALL DGEQPF( P, N, B, LDB, IWORK, TAU, WORK, INFO )
 | 
						|
*
 | 
						|
*     Update A := A*P
 | 
						|
*
 | 
						|
      CALL DLAPMT( FORWRD, M, N, A, LDA, IWORK )
 | 
						|
*
 | 
						|
*     Determine the effective rank of matrix B.
 | 
						|
*
 | 
						|
      L = 0
 | 
						|
      DO 20 I = 1, MIN( P, N )
 | 
						|
         IF( ABS( B( I, I ) ).GT.TOLB )
 | 
						|
     $      L = L + 1
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
      IF( WANTV ) THEN
 | 
						|
*
 | 
						|
*        Copy the details of V, and form V.
 | 
						|
*
 | 
						|
         CALL DLASET( 'Full', P, P, ZERO, ZERO, V, LDV )
 | 
						|
         IF( P.GT.1 )
 | 
						|
     $      CALL DLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
 | 
						|
     $                   LDV )
 | 
						|
         CALL DORG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Clean up B
 | 
						|
*
 | 
						|
      DO 40 J = 1, L - 1
 | 
						|
         DO 30 I = J + 1, L
 | 
						|
            B( I, J ) = ZERO
 | 
						|
   30    CONTINUE
 | 
						|
   40 CONTINUE
 | 
						|
      IF( P.GT.L )
 | 
						|
     $   CALL DLASET( 'Full', P-L, N, ZERO, ZERO, B( L+1, 1 ), LDB )
 | 
						|
*
 | 
						|
      IF( WANTQ ) THEN
 | 
						|
*
 | 
						|
*        Set Q = I and Update Q := Q*P
 | 
						|
*
 | 
						|
         CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
 | 
						|
         CALL DLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( P.GE.L .AND. N.NE.L ) THEN
 | 
						|
*
 | 
						|
*        RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z
 | 
						|
*
 | 
						|
         CALL DGERQ2( L, N, B, LDB, TAU, WORK, INFO )
 | 
						|
*
 | 
						|
*        Update A := A*Z**T
 | 
						|
*
 | 
						|
         CALL DORMR2( 'Right', 'Transpose', M, N, L, B, LDB, TAU, A,
 | 
						|
     $                LDA, WORK, INFO )
 | 
						|
*
 | 
						|
         IF( WANTQ ) THEN
 | 
						|
*
 | 
						|
*           Update Q := Q*Z**T
 | 
						|
*
 | 
						|
            CALL DORMR2( 'Right', 'Transpose', N, N, L, B, LDB, TAU, Q,
 | 
						|
     $                   LDQ, WORK, INFO )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Clean up B
 | 
						|
*
 | 
						|
         CALL DLASET( 'Full', L, N-L, ZERO, ZERO, B, LDB )
 | 
						|
         DO 60 J = N - L + 1, N
 | 
						|
            DO 50 I = J - N + L + 1, L
 | 
						|
               B( I, J ) = ZERO
 | 
						|
   50       CONTINUE
 | 
						|
   60    CONTINUE
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Let              N-L     L
 | 
						|
*                A = ( A11    A12 ) M,
 | 
						|
*
 | 
						|
*     then the following does the complete QR decomposition of A11:
 | 
						|
*
 | 
						|
*              A11 = U*(  0  T12 )*P1**T
 | 
						|
*                      (  0   0  )
 | 
						|
*
 | 
						|
      DO 70 I = 1, N - L
 | 
						|
         IWORK( I ) = 0
 | 
						|
   70 CONTINUE
 | 
						|
      CALL DGEQPF( M, N-L, A, LDA, IWORK, TAU, WORK, INFO )
 | 
						|
*
 | 
						|
*     Determine the effective rank of A11
 | 
						|
*
 | 
						|
      K = 0
 | 
						|
      DO 80 I = 1, MIN( M, N-L )
 | 
						|
         IF( ABS( A( I, I ) ).GT.TOLA )
 | 
						|
     $      K = K + 1
 | 
						|
   80 CONTINUE
 | 
						|
*
 | 
						|
*     Update A12 := U**T*A12, where A12 = A( 1:M, N-L+1:N )
 | 
						|
*
 | 
						|
      CALL DORM2R( 'Left', 'Transpose', M, L, MIN( M, N-L ), A, LDA,
 | 
						|
     $             TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
 | 
						|
*
 | 
						|
      IF( WANTU ) THEN
 | 
						|
*
 | 
						|
*        Copy the details of U, and form U
 | 
						|
*
 | 
						|
         CALL DLASET( 'Full', M, M, ZERO, ZERO, U, LDU )
 | 
						|
         IF( M.GT.1 )
 | 
						|
     $      CALL DLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
 | 
						|
     $                   LDU )
 | 
						|
         CALL DORG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( WANTQ ) THEN
 | 
						|
*
 | 
						|
*        Update Q( 1:N, 1:N-L )  = Q( 1:N, 1:N-L )*P1
 | 
						|
*
 | 
						|
         CALL DLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Clean up A: set the strictly lower triangular part of
 | 
						|
*     A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
 | 
						|
*
 | 
						|
      DO 100 J = 1, K - 1
 | 
						|
         DO 90 I = J + 1, K
 | 
						|
            A( I, J ) = ZERO
 | 
						|
   90    CONTINUE
 | 
						|
  100 CONTINUE
 | 
						|
      IF( M.GT.K )
 | 
						|
     $   CALL DLASET( 'Full', M-K, N-L, ZERO, ZERO, A( K+1, 1 ), LDA )
 | 
						|
*
 | 
						|
      IF( N-L.GT.K ) THEN
 | 
						|
*
 | 
						|
*        RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
 | 
						|
*
 | 
						|
         CALL DGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
 | 
						|
*
 | 
						|
         IF( WANTQ ) THEN
 | 
						|
*
 | 
						|
*           Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**T
 | 
						|
*
 | 
						|
            CALL DORMR2( 'Right', 'Transpose', N, N-L, K, A, LDA, TAU,
 | 
						|
     $                   Q, LDQ, WORK, INFO )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Clean up A
 | 
						|
*
 | 
						|
         CALL DLASET( 'Full', K, N-L-K, ZERO, ZERO, A, LDA )
 | 
						|
         DO 120 J = N - L - K + 1, N - L
 | 
						|
            DO 110 I = J - N + L + K + 1, K
 | 
						|
               A( I, J ) = ZERO
 | 
						|
  110       CONTINUE
 | 
						|
  120    CONTINUE
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( M.GT.K ) THEN
 | 
						|
*
 | 
						|
*        QR factorization of A( K+1:M,N-L+1:N )
 | 
						|
*
 | 
						|
         CALL DGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
 | 
						|
*
 | 
						|
         IF( WANTU ) THEN
 | 
						|
*
 | 
						|
*           Update U(:,K+1:M) := U(:,K+1:M)*U1
 | 
						|
*
 | 
						|
            CALL DORM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
 | 
						|
     $                   A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
 | 
						|
     $                   WORK, INFO )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Clean up
 | 
						|
*
 | 
						|
         DO 140 J = N - L + 1, N
 | 
						|
            DO 130 I = J - N + K + L + 1, M
 | 
						|
               A( I, J ) = ZERO
 | 
						|
  130       CONTINUE
 | 
						|
  140    CONTINUE
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DGGSVP
 | 
						|
*
 | 
						|
      END
 |