355 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			355 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CLAEIN + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claein.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claein.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claein.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CLAEIN( RIGHTV, NOINIT, N, H, LDH, W, V, B, LDB, RWORK,
 | 
						|
*                          EPS3, SMLNUM, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       LOGICAL            NOINIT, RIGHTV
 | 
						|
*       INTEGER            INFO, LDB, LDH, N
 | 
						|
*       REAL               EPS3, SMLNUM
 | 
						|
*       COMPLEX            W
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               RWORK( * )
 | 
						|
*       COMPLEX            B( LDB, * ), H( LDH, * ), V( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CLAEIN uses inverse iteration to find a right or left eigenvector
 | 
						|
*> corresponding to the eigenvalue W of a complex upper Hessenberg
 | 
						|
*> matrix H.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] RIGHTV
 | 
						|
*> \verbatim
 | 
						|
*>          RIGHTV is LOGICAL
 | 
						|
*>          = .TRUE. : compute right eigenvector;
 | 
						|
*>          = .FALSE.: compute left eigenvector.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NOINIT
 | 
						|
*> \verbatim
 | 
						|
*>          NOINIT is LOGICAL
 | 
						|
*>          = .TRUE. : no initial vector supplied in V
 | 
						|
*>          = .FALSE.: initial vector supplied in V.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix H.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] H
 | 
						|
*> \verbatim
 | 
						|
*>          H is COMPLEX array, dimension (LDH,N)
 | 
						|
*>          The upper Hessenberg matrix H.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDH
 | 
						|
*> \verbatim
 | 
						|
*>          LDH is INTEGER
 | 
						|
*>          The leading dimension of the array H.  LDH >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is COMPLEX
 | 
						|
*>          The eigenvalue of H whose corresponding right or left
 | 
						|
*>          eigenvector is to be computed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is COMPLEX array, dimension (N)
 | 
						|
*>          On entry, if NOINIT = .FALSE., V must contain a starting
 | 
						|
*>          vector for inverse iteration; otherwise V need not be set.
 | 
						|
*>          On exit, V contains the computed eigenvector, normalized so
 | 
						|
*>          that the component of largest magnitude has magnitude 1; here
 | 
						|
*>          the magnitude of a complex number (x,y) is taken to be
 | 
						|
*>          |x| + |y|.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX array, dimension (LDB,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] EPS3
 | 
						|
*> \verbatim
 | 
						|
*>          EPS3 is REAL
 | 
						|
*>          A small machine-dependent value which is used to perturb
 | 
						|
*>          close eigenvalues, and to replace zero pivots.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SMLNUM
 | 
						|
*> \verbatim
 | 
						|
*>          SMLNUM is REAL
 | 
						|
*>          A machine-dependent value close to the underflow threshold.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          = 1:  inverse iteration did not converge; V is set to the
 | 
						|
*>                last iterate.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CLAEIN( RIGHTV, NOINIT, N, H, LDH, W, V, B, LDB, RWORK,
 | 
						|
     $                   EPS3, SMLNUM, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      LOGICAL            NOINIT, RIGHTV
 | 
						|
      INTEGER            INFO, LDB, LDH, N
 | 
						|
      REAL               EPS3, SMLNUM
 | 
						|
      COMPLEX            W
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               RWORK( * )
 | 
						|
      COMPLEX            B( LDB, * ), H( LDH, * ), V( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, TENTH
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, TENTH = 1.0E-1 )
 | 
						|
      COMPLEX            ZERO
 | 
						|
      PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      CHARACTER          NORMIN, TRANS
 | 
						|
      INTEGER            I, IERR, ITS, J
 | 
						|
      REAL               GROWTO, NRMSML, ROOTN, RTEMP, SCALE, VNORM
 | 
						|
      COMPLEX            CDUM, EI, EJ, TEMP, X
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ICAMAX
 | 
						|
      REAL               SCASUM, SCNRM2
 | 
						|
      COMPLEX            CLADIV
 | 
						|
      EXTERNAL           ICAMAX, SCASUM, SCNRM2, CLADIV
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CLATRS, CSSCAL
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, AIMAG, MAX, REAL, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      REAL               CABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function definitions ..
 | 
						|
      CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
*     GROWTO is the threshold used in the acceptance test for an
 | 
						|
*     eigenvector.
 | 
						|
*
 | 
						|
      ROOTN = SQRT( REAL( N ) )
 | 
						|
      GROWTO = TENTH / ROOTN
 | 
						|
      NRMSML = MAX( ONE, EPS3*ROOTN )*SMLNUM
 | 
						|
*
 | 
						|
*     Form B = H - W*I (except that the subdiagonal elements are not
 | 
						|
*     stored).
 | 
						|
*
 | 
						|
      DO 20 J = 1, N
 | 
						|
         DO 10 I = 1, J - 1
 | 
						|
            B( I, J ) = H( I, J )
 | 
						|
   10    CONTINUE
 | 
						|
         B( J, J ) = H( J, J ) - W
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
      IF( NOINIT ) THEN
 | 
						|
*
 | 
						|
*        Initialize V.
 | 
						|
*
 | 
						|
         DO 30 I = 1, N
 | 
						|
            V( I ) = EPS3
 | 
						|
   30    CONTINUE
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Scale supplied initial vector.
 | 
						|
*
 | 
						|
         VNORM = SCNRM2( N, V, 1 )
 | 
						|
         CALL CSSCAL( N, ( EPS3*ROOTN ) / MAX( VNORM, NRMSML ), V, 1 )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( RIGHTV ) THEN
 | 
						|
*
 | 
						|
*        LU decomposition with partial pivoting of B, replacing zero
 | 
						|
*        pivots by EPS3.
 | 
						|
*
 | 
						|
         DO 60 I = 1, N - 1
 | 
						|
            EI = H( I+1, I )
 | 
						|
            IF( CABS1( B( I, I ) ).LT.CABS1( EI ) ) THEN
 | 
						|
*
 | 
						|
*              Interchange rows and eliminate.
 | 
						|
*
 | 
						|
               X = CLADIV( B( I, I ), EI )
 | 
						|
               B( I, I ) = EI
 | 
						|
               DO 40 J = I + 1, N
 | 
						|
                  TEMP = B( I+1, J )
 | 
						|
                  B( I+1, J ) = B( I, J ) - X*TEMP
 | 
						|
                  B( I, J ) = TEMP
 | 
						|
   40          CONTINUE
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Eliminate without interchange.
 | 
						|
*
 | 
						|
               IF( B( I, I ).EQ.ZERO )
 | 
						|
     $            B( I, I ) = EPS3
 | 
						|
               X = CLADIV( EI, B( I, I ) )
 | 
						|
               IF( X.NE.ZERO ) THEN
 | 
						|
                  DO 50 J = I + 1, N
 | 
						|
                     B( I+1, J ) = B( I+1, J ) - X*B( I, J )
 | 
						|
   50             CONTINUE
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
   60    CONTINUE
 | 
						|
         IF( B( N, N ).EQ.ZERO )
 | 
						|
     $      B( N, N ) = EPS3
 | 
						|
*
 | 
						|
         TRANS = 'N'
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        UL decomposition with partial pivoting of B, replacing zero
 | 
						|
*        pivots by EPS3.
 | 
						|
*
 | 
						|
         DO 90 J = N, 2, -1
 | 
						|
            EJ = H( J, J-1 )
 | 
						|
            IF( CABS1( B( J, J ) ).LT.CABS1( EJ ) ) THEN
 | 
						|
*
 | 
						|
*              Interchange columns and eliminate.
 | 
						|
*
 | 
						|
               X = CLADIV( B( J, J ), EJ )
 | 
						|
               B( J, J ) = EJ
 | 
						|
               DO 70 I = 1, J - 1
 | 
						|
                  TEMP = B( I, J-1 )
 | 
						|
                  B( I, J-1 ) = B( I, J ) - X*TEMP
 | 
						|
                  B( I, J ) = TEMP
 | 
						|
   70          CONTINUE
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Eliminate without interchange.
 | 
						|
*
 | 
						|
               IF( B( J, J ).EQ.ZERO )
 | 
						|
     $            B( J, J ) = EPS3
 | 
						|
               X = CLADIV( EJ, B( J, J ) )
 | 
						|
               IF( X.NE.ZERO ) THEN
 | 
						|
                  DO 80 I = 1, J - 1
 | 
						|
                     B( I, J-1 ) = B( I, J-1 ) - X*B( I, J )
 | 
						|
   80             CONTINUE
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
   90    CONTINUE
 | 
						|
         IF( B( 1, 1 ).EQ.ZERO )
 | 
						|
     $      B( 1, 1 ) = EPS3
 | 
						|
*
 | 
						|
         TRANS = 'C'
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      NORMIN = 'N'
 | 
						|
      DO 110 ITS = 1, N
 | 
						|
*
 | 
						|
*        Solve U*x = scale*v for a right eigenvector
 | 
						|
*          or U**H *x = scale*v for a left eigenvector,
 | 
						|
*        overwriting x on v.
 | 
						|
*
 | 
						|
         CALL CLATRS( 'Upper', TRANS, 'Nonunit', NORMIN, N, B, LDB, V,
 | 
						|
     $                SCALE, RWORK, IERR )
 | 
						|
         NORMIN = 'Y'
 | 
						|
*
 | 
						|
*        Test for sufficient growth in the norm of v.
 | 
						|
*
 | 
						|
         VNORM = SCASUM( N, V, 1 )
 | 
						|
         IF( VNORM.GE.GROWTO*SCALE )
 | 
						|
     $      GO TO 120
 | 
						|
*
 | 
						|
*        Choose new orthogonal starting vector and try again.
 | 
						|
*
 | 
						|
         RTEMP = EPS3 / ( ROOTN+ONE )
 | 
						|
         V( 1 ) = EPS3
 | 
						|
         DO 100 I = 2, N
 | 
						|
            V( I ) = RTEMP
 | 
						|
  100    CONTINUE
 | 
						|
         V( N-ITS+1 ) = V( N-ITS+1 ) - EPS3*ROOTN
 | 
						|
  110 CONTINUE
 | 
						|
*
 | 
						|
*     Failure to find eigenvector in N iterations.
 | 
						|
*
 | 
						|
      INFO = 1
 | 
						|
*
 | 
						|
  120 CONTINUE
 | 
						|
*
 | 
						|
*     Normalize eigenvector.
 | 
						|
*
 | 
						|
      I = ICAMAX( N, V, 1 )
 | 
						|
      CALL CSSCAL( N, ONE / CABS1( V( I ) ), V, 1 )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CLAEIN
 | 
						|
*
 | 
						|
      END
 |