477 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			477 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> ZGELSY solves overdetermined or underdetermined systems for GE matrices</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZGELSY + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelsy.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelsy.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelsy.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
 | 
						|
*                          WORK, LWORK, RWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
 | 
						|
*       DOUBLE PRECISION   RCOND
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            JPVT( * )
 | 
						|
*       DOUBLE PRECISION   RWORK( * )
 | 
						|
*       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZGELSY computes the minimum-norm solution to a complex linear least
 | 
						|
*> squares problem:
 | 
						|
*>     minimize || A * X - B ||
 | 
						|
*> using a complete orthogonal factorization of A.  A is an M-by-N
 | 
						|
*> matrix which may be rank-deficient.
 | 
						|
*>
 | 
						|
*> Several right hand side vectors b and solution vectors x can be
 | 
						|
*> handled in a single call; they are stored as the columns of the
 | 
						|
*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
 | 
						|
*> matrix X.
 | 
						|
*>
 | 
						|
*> The routine first computes a QR factorization with column pivoting:
 | 
						|
*>     A * P = Q * [ R11 R12 ]
 | 
						|
*>                 [  0  R22 ]
 | 
						|
*> with R11 defined as the largest leading submatrix whose estimated
 | 
						|
*> condition number is less than 1/RCOND.  The order of R11, RANK,
 | 
						|
*> is the effective rank of A.
 | 
						|
*>
 | 
						|
*> Then, R22 is considered to be negligible, and R12 is annihilated
 | 
						|
*> by unitary transformations from the right, arriving at the
 | 
						|
*> complete orthogonal factorization:
 | 
						|
*>    A * P = Q * [ T11 0 ] * Z
 | 
						|
*>                [  0  0 ]
 | 
						|
*> The minimum-norm solution is then
 | 
						|
*>    X = P * Z**H [ inv(T11)*Q1**H*B ]
 | 
						|
*>                 [        0         ]
 | 
						|
*> where Q1 consists of the first RANK columns of Q.
 | 
						|
*>
 | 
						|
*> This routine is basically identical to the original xGELSX except
 | 
						|
*> three differences:
 | 
						|
*>   o The permutation of matrix B (the right hand side) is faster and
 | 
						|
*>     more simple.
 | 
						|
*>   o The call to the subroutine xGEQPF has been substituted by the
 | 
						|
*>     the call to the subroutine xGEQP3. This subroutine is a Blas-3
 | 
						|
*>     version of the QR factorization with column pivoting.
 | 
						|
*>   o Matrix B (the right hand side) is updated with Blas-3.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of
 | 
						|
*>          columns of matrices B and X. NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          On entry, the M-by-N matrix A.
 | 
						|
*>          On exit, A has been overwritten by details of its
 | 
						|
*>          complete orthogonal factorization.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the M-by-NRHS right hand side matrix B.
 | 
						|
*>          On exit, the N-by-NRHS solution matrix X.
 | 
						|
*>          If M = 0 or N = 0, B is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B. LDB >= max(1,M,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] JPVT
 | 
						|
*> \verbatim
 | 
						|
*>          JPVT is INTEGER array, dimension (N)
 | 
						|
*>          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
 | 
						|
*>          to the front of AP, otherwise column i is a free column.
 | 
						|
*>          On exit, if JPVT(i) = k, then the i-th column of A*P
 | 
						|
*>          was the k-th column of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is DOUBLE PRECISION
 | 
						|
*>          RCOND is used to determine the effective rank of A, which
 | 
						|
*>          is defined as the order of the largest leading triangular
 | 
						|
*>          submatrix R11 in the QR factorization with pivoting of A,
 | 
						|
*>          whose estimated condition number < 1/RCOND.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RANK
 | 
						|
*> \verbatim
 | 
						|
*>          RANK is INTEGER
 | 
						|
*>          The effective rank of A, i.e., the order of the submatrix
 | 
						|
*>          R11.  This is the same as the order of the submatrix T11
 | 
						|
*>          in the complete orthogonal factorization of A.
 | 
						|
*>          If NRHS = 0, RANK = 0 on output.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*>          The unblocked strategy requires that:
 | 
						|
*>            LWORK >= MN + MAX( 2*MN, N+1, MN+NRHS )
 | 
						|
*>          where MN = min(M,N).
 | 
						|
*>          The block algorithm requires that:
 | 
						|
*>            LWORK >= MN + MAX( 2*MN, NB*(N+1), MN+MN*NB, MN+NB*NRHS )
 | 
						|
*>          where NB is an upper bound on the blocksize returned
 | 
						|
*>          by ILAENV for the routines ZGEQP3, ZTZRZF, CTZRQF, ZUNMQR,
 | 
						|
*>          and ZUNMRZ.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is DOUBLE PRECISION array, dimension (2*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16GEsolve
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA \n
 | 
						|
*>    E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
 | 
						|
*>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
 | 
						|
     $                   WORK, LWORK, RWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
 | 
						|
      DOUBLE PRECISION   RCOND
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            JPVT( * )
 | 
						|
      DOUBLE PRECISION   RWORK( * )
 | 
						|
      COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      INTEGER            IMAX, IMIN
 | 
						|
      PARAMETER          ( IMAX = 1, IMIN = 2 )
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
      COMPLEX*16         CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
 | 
						|
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY
 | 
						|
      INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKOPT, MN,
 | 
						|
     $                   NB, NB1, NB2, NB3, NB4
 | 
						|
      DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR,
 | 
						|
     $                   SMLNUM, WSIZE
 | 
						|
      COMPLEX*16         C1, C2, S1, S2
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DLABAD, XERBLA, ZCOPY, ZGEQP3, ZLAIC1, ZLASCL,
 | 
						|
     $                   ZLASET, ZTRSM, ZTZRZF, ZUNMQR, ZUNMRZ
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ILAENV
 | 
						|
      DOUBLE PRECISION   DLAMCH, ZLANGE
 | 
						|
      EXTERNAL           ILAENV, DLAMCH, ZLANGE
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, DCMPLX, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      MN = MIN( M, N )
 | 
						|
      ISMIN = MN + 1
 | 
						|
      ISMAX = 2*MN + 1
 | 
						|
*
 | 
						|
*     Test the input arguments.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      NB1 = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
 | 
						|
      NB2 = ILAENV( 1, 'ZGERQF', ' ', M, N, -1, -1 )
 | 
						|
      NB3 = ILAENV( 1, 'ZUNMQR', ' ', M, N, NRHS, -1 )
 | 
						|
      NB4 = ILAENV( 1, 'ZUNMRQ', ' ', M, N, NRHS, -1 )
 | 
						|
      NB = MAX( NB1, NB2, NB3, NB4 )
 | 
						|
      LWKOPT = MAX( 1, MN+2*N+NB*( N+1 ), 2*MN+NB*NRHS )
 | 
						|
      WORK( 1 ) = DCMPLX( LWKOPT )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LWORK.LT.( MN+MAX( 2*MN, N+1, MN+NRHS ) ) .AND. .NOT.
 | 
						|
     $         LQUERY ) THEN
 | 
						|
         INFO = -12
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZGELSY', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( MIN( M, N, NRHS ).EQ.0 ) THEN
 | 
						|
         RANK = 0
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Get machine parameters
 | 
						|
*
 | 
						|
      SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      CALL DLABAD( SMLNUM, BIGNUM )
 | 
						|
*
 | 
						|
*     Scale A, B if max entries outside range [SMLNUM,BIGNUM]
 | 
						|
*
 | 
						|
      ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
 | 
						|
      IASCL = 0
 | 
						|
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm up to SMLNUM
 | 
						|
*
 | 
						|
         CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
 | 
						|
         IASCL = 1
 | 
						|
      ELSE IF( ANRM.GT.BIGNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm down to BIGNUM
 | 
						|
*
 | 
						|
         CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
 | 
						|
         IASCL = 2
 | 
						|
      ELSE IF( ANRM.EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*        Matrix all zero. Return zero solution.
 | 
						|
*
 | 
						|
         CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
 | 
						|
         RANK = 0
 | 
						|
         GO TO 70
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
 | 
						|
      IBSCL = 0
 | 
						|
      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm up to SMLNUM
 | 
						|
*
 | 
						|
         CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
 | 
						|
         IBSCL = 1
 | 
						|
      ELSE IF( BNRM.GT.BIGNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm down to BIGNUM
 | 
						|
*
 | 
						|
         CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
 | 
						|
         IBSCL = 2
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute QR factorization with column pivoting of A:
 | 
						|
*        A * P = Q * R
 | 
						|
*
 | 
						|
      CALL ZGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ),
 | 
						|
     $             LWORK-MN, RWORK, INFO )
 | 
						|
      WSIZE = MN + DBLE( WORK( MN+1 ) )
 | 
						|
*
 | 
						|
*     complex workspace: MN+NB*(N+1). real workspace 2*N.
 | 
						|
*     Details of Householder rotations stored in WORK(1:MN).
 | 
						|
*
 | 
						|
*     Determine RANK using incremental condition estimation
 | 
						|
*
 | 
						|
      WORK( ISMIN ) = CONE
 | 
						|
      WORK( ISMAX ) = CONE
 | 
						|
      SMAX = ABS( A( 1, 1 ) )
 | 
						|
      SMIN = SMAX
 | 
						|
      IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
 | 
						|
         RANK = 0
 | 
						|
         CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
 | 
						|
         GO TO 70
 | 
						|
      ELSE
 | 
						|
         RANK = 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
   10 CONTINUE
 | 
						|
      IF( RANK.LT.MN ) THEN
 | 
						|
         I = RANK + 1
 | 
						|
         CALL ZLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
 | 
						|
     $                A( I, I ), SMINPR, S1, C1 )
 | 
						|
         CALL ZLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
 | 
						|
     $                A( I, I ), SMAXPR, S2, C2 )
 | 
						|
*
 | 
						|
         IF( SMAXPR*RCOND.LE.SMINPR ) THEN
 | 
						|
            DO 20 I = 1, RANK
 | 
						|
               WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
 | 
						|
               WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
 | 
						|
   20       CONTINUE
 | 
						|
            WORK( ISMIN+RANK ) = C1
 | 
						|
            WORK( ISMAX+RANK ) = C2
 | 
						|
            SMIN = SMINPR
 | 
						|
            SMAX = SMAXPR
 | 
						|
            RANK = RANK + 1
 | 
						|
            GO TO 10
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     complex workspace: 3*MN.
 | 
						|
*
 | 
						|
*     Logically partition R = [ R11 R12 ]
 | 
						|
*                             [  0  R22 ]
 | 
						|
*     where R11 = R(1:RANK,1:RANK)
 | 
						|
*
 | 
						|
*     [R11,R12] = [ T11, 0 ] * Y
 | 
						|
*
 | 
						|
      IF( RANK.LT.N )
 | 
						|
     $   CALL ZTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ),
 | 
						|
     $                LWORK-2*MN, INFO )
 | 
						|
*
 | 
						|
*     complex workspace: 2*MN.
 | 
						|
*     Details of Householder rotations stored in WORK(MN+1:2*MN)
 | 
						|
*
 | 
						|
*     B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS)
 | 
						|
*
 | 
						|
      CALL ZUNMQR( 'Left', 'Conjugate transpose', M, NRHS, MN, A, LDA,
 | 
						|
     $             WORK( 1 ), B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO )
 | 
						|
      WSIZE = MAX( WSIZE, 2*MN+DBLE( WORK( 2*MN+1 ) ) )
 | 
						|
*
 | 
						|
*     complex workspace: 2*MN+NB*NRHS.
 | 
						|
*
 | 
						|
*     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
 | 
						|
*
 | 
						|
      CALL ZTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
 | 
						|
     $            NRHS, CONE, A, LDA, B, LDB )
 | 
						|
*
 | 
						|
      DO 40 J = 1, NRHS
 | 
						|
         DO 30 I = RANK + 1, N
 | 
						|
            B( I, J ) = CZERO
 | 
						|
   30    CONTINUE
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
*     B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS)
 | 
						|
*
 | 
						|
      IF( RANK.LT.N ) THEN
 | 
						|
         CALL ZUNMRZ( 'Left', 'Conjugate transpose', N, NRHS, RANK,
 | 
						|
     $                N-RANK, A, LDA, WORK( MN+1 ), B, LDB,
 | 
						|
     $                WORK( 2*MN+1 ), LWORK-2*MN, INFO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     complex workspace: 2*MN+NRHS.
 | 
						|
*
 | 
						|
*     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
 | 
						|
*
 | 
						|
      DO 60 J = 1, NRHS
 | 
						|
         DO 50 I = 1, N
 | 
						|
            WORK( JPVT( I ) ) = B( I, J )
 | 
						|
   50    CONTINUE
 | 
						|
         CALL ZCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 )
 | 
						|
   60 CONTINUE
 | 
						|
*
 | 
						|
*     complex workspace: N.
 | 
						|
*
 | 
						|
*     Undo scaling
 | 
						|
*
 | 
						|
      IF( IASCL.EQ.1 ) THEN
 | 
						|
         CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
 | 
						|
         CALL ZLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
 | 
						|
     $                INFO )
 | 
						|
      ELSE IF( IASCL.EQ.2 ) THEN
 | 
						|
         CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
 | 
						|
         CALL ZLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
 | 
						|
     $                INFO )
 | 
						|
      END IF
 | 
						|
      IF( IBSCL.EQ.1 ) THEN
 | 
						|
         CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
 | 
						|
      ELSE IF( IBSCL.EQ.2 ) THEN
 | 
						|
         CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
   70 CONTINUE
 | 
						|
      WORK( 1 ) = DCMPLX( LWKOPT )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZGELSY
 | 
						|
*
 | 
						|
      END
 |