433 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			433 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SPBTRF
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SPBTRF + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spbtrf.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spbtrf.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spbtrf.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SPBTRF( UPLO, N, KD, AB, LDAB, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, KD, LDAB, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               AB( LDAB, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SPBTRF computes the Cholesky factorization of a real symmetric
 | 
						|
*> positive definite band matrix A.
 | 
						|
*>
 | 
						|
*> The factorization has the form
 | 
						|
*>    A = U**T * U,  if UPLO = 'U', or
 | 
						|
*>    A = L  * L**T,  if UPLO = 'L',
 | 
						|
*> where U is an upper triangular matrix and L is lower triangular.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangle of A is stored;
 | 
						|
*>          = 'L':  Lower triangle of A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KD
 | 
						|
*> \verbatim
 | 
						|
*>          KD is INTEGER
 | 
						|
*>          The number of superdiagonals of the matrix A if UPLO = 'U',
 | 
						|
*>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AB
 | 
						|
*> \verbatim
 | 
						|
*>          AB is REAL array, dimension (LDAB,N)
 | 
						|
*>          On entry, the upper or lower triangle of the symmetric band
 | 
						|
*>          matrix A, stored in the first KD+1 rows of the array.  The
 | 
						|
*>          j-th column of A is stored in the j-th column of the array AB
 | 
						|
*>          as follows:
 | 
						|
*>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 | 
						|
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 | 
						|
*>
 | 
						|
*>          On exit, if INFO = 0, the triangular factor U or L from the
 | 
						|
*>          Cholesky factorization A = U**T*U or A = L*L**T of the band
 | 
						|
*>          matrix A, in the same storage format as A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAB
 | 
						|
*> \verbatim
 | 
						|
*>          LDAB is INTEGER
 | 
						|
*>          The leading dimension of the array AB.  LDAB >= KD+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i, the leading principal minor of order i
 | 
						|
*>                is not positive, and the factorization could not be
 | 
						|
*>                completed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The band storage scheme is illustrated by the following example, when
 | 
						|
*>  N = 6, KD = 2, and UPLO = 'U':
 | 
						|
*>
 | 
						|
*>  On entry:                       On exit:
 | 
						|
*>
 | 
						|
*>      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46
 | 
						|
*>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
 | 
						|
*>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
 | 
						|
*>
 | 
						|
*>  Similarly, if UPLO = 'L' the format of A is as follows:
 | 
						|
*>
 | 
						|
*>  On entry:                       On exit:
 | 
						|
*>
 | 
						|
*>     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66
 | 
						|
*>     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *
 | 
						|
*>     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *
 | 
						|
*>
 | 
						|
*>  Array elements marked * are not used by the routine.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>  Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SPBTRF( UPLO, N, KD, AB, LDAB, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, KD, LDAB, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               AB( LDAB, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
      INTEGER            NBMAX, LDWORK
 | 
						|
      PARAMETER          ( NBMAX = 32, LDWORK = NBMAX+1 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, I2, I3, IB, II, J, JJ, NB
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      REAL               WORK( LDWORK, NBMAX )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           LSAME, ILAENV
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SGEMM, SPBTF2, SPOTF2, SSYRK, STRSM, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( ( .NOT.LSAME( UPLO, 'U' ) ) .AND.
 | 
						|
     $    ( .NOT.LSAME( UPLO, 'L' ) ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( KD.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDAB.LT.KD+1 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SPBTRF', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Determine the block size for this environment
 | 
						|
*
 | 
						|
      NB = ILAENV( 1, 'SPBTRF', UPLO, N, KD, -1, -1 )
 | 
						|
*
 | 
						|
*     The block size must not exceed the semi-bandwidth KD, and must not
 | 
						|
*     exceed the limit set by the size of the local array WORK.
 | 
						|
*
 | 
						|
      NB = MIN( NB, NBMAX )
 | 
						|
*
 | 
						|
      IF( NB.LE.1 .OR. NB.GT.KD ) THEN
 | 
						|
*
 | 
						|
*        Use unblocked code
 | 
						|
*
 | 
						|
         CALL SPBTF2( UPLO, N, KD, AB, LDAB, INFO )
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Use blocked code
 | 
						|
*
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
*
 | 
						|
*           Compute the Cholesky factorization of a symmetric band
 | 
						|
*           matrix, given the upper triangle of the matrix in band
 | 
						|
*           storage.
 | 
						|
*
 | 
						|
*           Zero the upper triangle of the work array.
 | 
						|
*
 | 
						|
            DO 20 J = 1, NB
 | 
						|
               DO 10 I = 1, J - 1
 | 
						|
                  WORK( I, J ) = ZERO
 | 
						|
   10          CONTINUE
 | 
						|
   20       CONTINUE
 | 
						|
*
 | 
						|
*           Process the band matrix one diagonal block at a time.
 | 
						|
*
 | 
						|
            DO 70 I = 1, N, NB
 | 
						|
               IB = MIN( NB, N-I+1 )
 | 
						|
*
 | 
						|
*              Factorize the diagonal block
 | 
						|
*
 | 
						|
               CALL SPOTF2( UPLO, IB, AB( KD+1, I ), LDAB-1, II )
 | 
						|
               IF( II.NE.0 ) THEN
 | 
						|
                  INFO = I + II - 1
 | 
						|
                  GO TO 150
 | 
						|
               END IF
 | 
						|
               IF( I+IB.LE.N ) THEN
 | 
						|
*
 | 
						|
*                 Update the relevant part of the trailing submatrix.
 | 
						|
*                 If A11 denotes the diagonal block which has just been
 | 
						|
*                 factorized, then we need to update the remaining
 | 
						|
*                 blocks in the diagram:
 | 
						|
*
 | 
						|
*                    A11   A12   A13
 | 
						|
*                          A22   A23
 | 
						|
*                                A33
 | 
						|
*
 | 
						|
*                 The numbers of rows and columns in the partitioning
 | 
						|
*                 are IB, I2, I3 respectively. The blocks A12, A22 and
 | 
						|
*                 A23 are empty if IB = KD. The upper triangle of A13
 | 
						|
*                 lies outside the band.
 | 
						|
*
 | 
						|
                  I2 = MIN( KD-IB, N-I-IB+1 )
 | 
						|
                  I3 = MIN( IB, N-I-KD+1 )
 | 
						|
*
 | 
						|
                  IF( I2.GT.0 ) THEN
 | 
						|
*
 | 
						|
*                    Update A12
 | 
						|
*
 | 
						|
                     CALL STRSM( 'Left', 'Upper', 'Transpose',
 | 
						|
     $                           'Non-unit', IB, I2, ONE, AB( KD+1, I ),
 | 
						|
     $                           LDAB-1, AB( KD+1-IB, I+IB ), LDAB-1 )
 | 
						|
*
 | 
						|
*                    Update A22
 | 
						|
*
 | 
						|
                     CALL SSYRK( 'Upper', 'Transpose', I2, IB, -ONE,
 | 
						|
     $                           AB( KD+1-IB, I+IB ), LDAB-1, ONE,
 | 
						|
     $                           AB( KD+1, I+IB ), LDAB-1 )
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( I3.GT.0 ) THEN
 | 
						|
*
 | 
						|
*                    Copy the lower triangle of A13 into the work array.
 | 
						|
*
 | 
						|
                     DO 40 JJ = 1, I3
 | 
						|
                        DO 30 II = JJ, IB
 | 
						|
                           WORK( II, JJ ) = AB( II-JJ+1, JJ+I+KD-1 )
 | 
						|
   30                   CONTINUE
 | 
						|
   40                CONTINUE
 | 
						|
*
 | 
						|
*                    Update A13 (in the work array).
 | 
						|
*
 | 
						|
                     CALL STRSM( 'Left', 'Upper', 'Transpose',
 | 
						|
     $                           'Non-unit', IB, I3, ONE, AB( KD+1, I ),
 | 
						|
     $                           LDAB-1, WORK, LDWORK )
 | 
						|
*
 | 
						|
*                    Update A23
 | 
						|
*
 | 
						|
                     IF( I2.GT.0 )
 | 
						|
     $                  CALL SGEMM( 'Transpose', 'No Transpose', I2, I3,
 | 
						|
     $                              IB, -ONE, AB( KD+1-IB, I+IB ),
 | 
						|
     $                              LDAB-1, WORK, LDWORK, ONE,
 | 
						|
     $                              AB( 1+IB, I+KD ), LDAB-1 )
 | 
						|
*
 | 
						|
*                    Update A33
 | 
						|
*
 | 
						|
                     CALL SSYRK( 'Upper', 'Transpose', I3, IB, -ONE,
 | 
						|
     $                           WORK, LDWORK, ONE, AB( KD+1, I+KD ),
 | 
						|
     $                           LDAB-1 )
 | 
						|
*
 | 
						|
*                    Copy the lower triangle of A13 back into place.
 | 
						|
*
 | 
						|
                     DO 60 JJ = 1, I3
 | 
						|
                        DO 50 II = JJ, IB
 | 
						|
                           AB( II-JJ+1, JJ+I+KD-1 ) = WORK( II, JJ )
 | 
						|
   50                   CONTINUE
 | 
						|
   60                CONTINUE
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
   70       CONTINUE
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Compute the Cholesky factorization of a symmetric band
 | 
						|
*           matrix, given the lower triangle of the matrix in band
 | 
						|
*           storage.
 | 
						|
*
 | 
						|
*           Zero the lower triangle of the work array.
 | 
						|
*
 | 
						|
            DO 90 J = 1, NB
 | 
						|
               DO 80 I = J + 1, NB
 | 
						|
                  WORK( I, J ) = ZERO
 | 
						|
   80          CONTINUE
 | 
						|
   90       CONTINUE
 | 
						|
*
 | 
						|
*           Process the band matrix one diagonal block at a time.
 | 
						|
*
 | 
						|
            DO 140 I = 1, N, NB
 | 
						|
               IB = MIN( NB, N-I+1 )
 | 
						|
*
 | 
						|
*              Factorize the diagonal block
 | 
						|
*
 | 
						|
               CALL SPOTF2( UPLO, IB, AB( 1, I ), LDAB-1, II )
 | 
						|
               IF( II.NE.0 ) THEN
 | 
						|
                  INFO = I + II - 1
 | 
						|
                  GO TO 150
 | 
						|
               END IF
 | 
						|
               IF( I+IB.LE.N ) THEN
 | 
						|
*
 | 
						|
*                 Update the relevant part of the trailing submatrix.
 | 
						|
*                 If A11 denotes the diagonal block which has just been
 | 
						|
*                 factorized, then we need to update the remaining
 | 
						|
*                 blocks in the diagram:
 | 
						|
*
 | 
						|
*                    A11
 | 
						|
*                    A21   A22
 | 
						|
*                    A31   A32   A33
 | 
						|
*
 | 
						|
*                 The numbers of rows and columns in the partitioning
 | 
						|
*                 are IB, I2, I3 respectively. The blocks A21, A22 and
 | 
						|
*                 A32 are empty if IB = KD. The lower triangle of A31
 | 
						|
*                 lies outside the band.
 | 
						|
*
 | 
						|
                  I2 = MIN( KD-IB, N-I-IB+1 )
 | 
						|
                  I3 = MIN( IB, N-I-KD+1 )
 | 
						|
*
 | 
						|
                  IF( I2.GT.0 ) THEN
 | 
						|
*
 | 
						|
*                    Update A21
 | 
						|
*
 | 
						|
                     CALL STRSM( 'Right', 'Lower', 'Transpose',
 | 
						|
     $                           'Non-unit', I2, IB, ONE, AB( 1, I ),
 | 
						|
     $                           LDAB-1, AB( 1+IB, I ), LDAB-1 )
 | 
						|
*
 | 
						|
*                    Update A22
 | 
						|
*
 | 
						|
                     CALL SSYRK( 'Lower', 'No Transpose', I2, IB, -ONE,
 | 
						|
     $                           AB( 1+IB, I ), LDAB-1, ONE,
 | 
						|
     $                           AB( 1, I+IB ), LDAB-1 )
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( I3.GT.0 ) THEN
 | 
						|
*
 | 
						|
*                    Copy the upper triangle of A31 into the work array.
 | 
						|
*
 | 
						|
                     DO 110 JJ = 1, IB
 | 
						|
                        DO 100 II = 1, MIN( JJ, I3 )
 | 
						|
                           WORK( II, JJ ) = AB( KD+1-JJ+II, JJ+I-1 )
 | 
						|
  100                   CONTINUE
 | 
						|
  110                CONTINUE
 | 
						|
*
 | 
						|
*                    Update A31 (in the work array).
 | 
						|
*
 | 
						|
                     CALL STRSM( 'Right', 'Lower', 'Transpose',
 | 
						|
     $                           'Non-unit', I3, IB, ONE, AB( 1, I ),
 | 
						|
     $                           LDAB-1, WORK, LDWORK )
 | 
						|
*
 | 
						|
*                    Update A32
 | 
						|
*
 | 
						|
                     IF( I2.GT.0 )
 | 
						|
     $                  CALL SGEMM( 'No transpose', 'Transpose', I3, I2,
 | 
						|
     $                              IB, -ONE, WORK, LDWORK,
 | 
						|
     $                              AB( 1+IB, I ), LDAB-1, ONE,
 | 
						|
     $                              AB( 1+KD-IB, I+IB ), LDAB-1 )
 | 
						|
*
 | 
						|
*                    Update A33
 | 
						|
*
 | 
						|
                     CALL SSYRK( 'Lower', 'No Transpose', I3, IB, -ONE,
 | 
						|
     $                           WORK, LDWORK, ONE, AB( 1, I+KD ),
 | 
						|
     $                           LDAB-1 )
 | 
						|
*
 | 
						|
*                    Copy the upper triangle of A31 back into place.
 | 
						|
*
 | 
						|
                     DO 130 JJ = 1, IB
 | 
						|
                        DO 120 II = 1, MIN( JJ, I3 )
 | 
						|
                           AB( KD+1-JJ+II, JJ+I-1 ) = WORK( II, JJ )
 | 
						|
  120                   CONTINUE
 | 
						|
  130                CONTINUE
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
  140       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
  150 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SPBTRF
 | 
						|
*
 | 
						|
      END
 |