380 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			380 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DORGTSQR_ROW
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DORGTSQR_ROW + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgtsqr_row.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgtsqr_row.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgtsqr_row.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DORGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
 | 
						|
*      $                         LWORK, INFO )
 | 
						|
*       IMPLICIT NONE
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER           INFO, LDA, LDT, LWORK, M, N, MB, NB
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION  A( LDA, * ), T( LDT, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DORGTSQR_ROW generates an M-by-N real matrix Q_out with
 | 
						|
*> orthonormal columns from the output of DLATSQR. These N orthonormal
 | 
						|
*> columns are the first N columns of a product of complex unitary
 | 
						|
*> matrices Q(k)_in of order M, which are returned by DLATSQR in
 | 
						|
*> a special format.
 | 
						|
*>
 | 
						|
*>      Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
 | 
						|
*>
 | 
						|
*> The input matrices Q(k)_in are stored in row and column blocks in A.
 | 
						|
*> See the documentation of DLATSQR for more details on the format of
 | 
						|
*> Q(k)_in, where each Q(k)_in is represented by block Householder
 | 
						|
*> transformations. This routine calls an auxiliary routine DLARFB_GETT,
 | 
						|
*> where the computation is performed on each individual block. The
 | 
						|
*> algorithm first sweeps NB-sized column blocks from the right to left
 | 
						|
*> starting in the bottom row block and continues to the top row block
 | 
						|
*> (hence _ROW in the routine name). This sweep is in reverse order of
 | 
						|
*> the order in which DLATSQR generates the output blocks.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A. M >= N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] MB
 | 
						|
*> \verbatim
 | 
						|
*>          MB is INTEGER
 | 
						|
*>          The row block size used by DLATSQR to return
 | 
						|
*>          arrays A and T. MB > N.
 | 
						|
*>          (Note that if MB > M, then M is used instead of MB
 | 
						|
*>          as the row block size).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NB
 | 
						|
*> \verbatim
 | 
						|
*>          NB is INTEGER
 | 
						|
*>          The column block size used by DLATSQR to return
 | 
						|
*>          arrays A and T. NB >= 1.
 | 
						|
*>          (Note that if NB > N, then N is used instead of NB
 | 
						|
*>          as the column block size).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>
 | 
						|
*>          On entry:
 | 
						|
*>
 | 
						|
*>             The elements on and above the diagonal are not used as
 | 
						|
*>             input. The elements below the diagonal represent the unit
 | 
						|
*>             lower-trapezoidal blocked matrix V computed by DLATSQR
 | 
						|
*>             that defines the input matrices Q_in(k) (ones on the
 | 
						|
*>             diagonal are not stored). See DLATSQR for more details.
 | 
						|
*>
 | 
						|
*>          On exit:
 | 
						|
*>
 | 
						|
*>             The array A contains an M-by-N orthonormal matrix Q_out,
 | 
						|
*>             i.e the columns of A are orthogonal unit vectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] T
 | 
						|
*> \verbatim
 | 
						|
*>          T is DOUBLE PRECISION array,
 | 
						|
*>          dimension (LDT, N * NIRB)
 | 
						|
*>          where NIRB = Number_of_input_row_blocks
 | 
						|
*>                     = MAX( 1, CEIL((M-N)/(MB-N)) )
 | 
						|
*>          Let NICB = Number_of_input_col_blocks
 | 
						|
*>                   = CEIL(N/NB)
 | 
						|
*>
 | 
						|
*>          The upper-triangular block reflectors used to define the
 | 
						|
*>          input matrices Q_in(k), k=(1:NIRB*NICB). The block
 | 
						|
*>          reflectors are stored in compact form in NIRB block
 | 
						|
*>          reflector sequences. Each of the NIRB block reflector
 | 
						|
*>          sequences is stored in a larger NB-by-N column block of T
 | 
						|
*>          and consists of NICB smaller NB-by-NB upper-triangular
 | 
						|
*>          column blocks. See DLATSQR for more details on the format
 | 
						|
*>          of T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDT
 | 
						|
*> \verbatim
 | 
						|
*>          LDT is INTEGER
 | 
						|
*>          The leading dimension of the array T.
 | 
						|
*>          LDT >= max(1,min(NB,N)).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*>          LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)),
 | 
						|
*>          where NBLOCAL=MIN(NB,N).
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed.
 | 
						|
*>          The routine only calculates the optimal size of the WORK
 | 
						|
*>          array, returns this value as the first entry of the WORK
 | 
						|
*>          array, and no error message related to LWORK is issued
 | 
						|
*>          by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> November 2020, Igor Kozachenko,
 | 
						|
*>                Computer Science Division,
 | 
						|
*>                University of California, Berkeley
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DORGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
 | 
						|
     $                         LWORK, INFO )
 | 
						|
      IMPLICIT NONE
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER           INFO, LDA, LDT, LWORK, M, N, MB, NB
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION  A( LDA, * ), T( LDT, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY
 | 
						|
      INTEGER            NBLOCAL, MB2, M_PLUS_ONE, ITMP, IB_BOTTOM,
 | 
						|
     $                   LWORKOPT, NUM_ALL_ROW_BLOCKS, JB_T, IB, IMB,
 | 
						|
     $                   KB, KB_LAST, KNB, MB1
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      DOUBLE PRECISION   DUMMY( 1, 1 )
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DLARFB_GETT, DLASET, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      LQUERY  = LWORK.EQ.-1
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( MB.LE.N ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( NB.LT.1 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      NBLOCAL = MIN( NB, N )
 | 
						|
*
 | 
						|
*     Determine the workspace size.
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         LWORKOPT = NBLOCAL * MAX( NBLOCAL, ( N - NBLOCAL ) )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Handle error in the input parameters and handle the workspace query.
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DORGTSQR_ROW', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF ( LQUERY ) THEN
 | 
						|
         WORK( 1 ) = DBLE( LWORKOPT )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( MIN( M, N ).EQ.0 ) THEN
 | 
						|
         WORK( 1 ) = DBLE( LWORKOPT )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     (0) Set the upper-triangular part of the matrix A to zero and
 | 
						|
*     its diagonal elements to one.
 | 
						|
*
 | 
						|
      CALL DLASET('U', M, N, ZERO, ONE, A, LDA )
 | 
						|
*
 | 
						|
*     KB_LAST is the column index of the last column block reflector
 | 
						|
*     in the matrices T and V.
 | 
						|
*
 | 
						|
      KB_LAST = ( ( N-1 ) / NBLOCAL ) * NBLOCAL + 1
 | 
						|
*
 | 
						|
*
 | 
						|
*     (1) Bottom-up loop over row blocks of A, except the top row block.
 | 
						|
*     NOTE: If MB>=M, then the loop is never executed.
 | 
						|
*
 | 
						|
      IF ( MB.LT.M ) THEN
 | 
						|
*
 | 
						|
*        MB2 is the row blocking size for the row blocks before the
 | 
						|
*        first top row block in the matrix A. IB is the row index for
 | 
						|
*        the row blocks in the matrix A before the first top row block.
 | 
						|
*        IB_BOTTOM is the row index for the last bottom row block
 | 
						|
*        in the matrix A. JB_T is the column index of the corresponding
 | 
						|
*        column block in the matrix T.
 | 
						|
*
 | 
						|
*        Initialize variables.
 | 
						|
*
 | 
						|
*        NUM_ALL_ROW_BLOCKS is the number of row blocks in the matrix A
 | 
						|
*        including the first row block.
 | 
						|
*
 | 
						|
         MB2 = MB - N
 | 
						|
         M_PLUS_ONE = M + 1
 | 
						|
         ITMP = ( M - MB - 1 ) / MB2
 | 
						|
         IB_BOTTOM = ITMP * MB2 + MB + 1
 | 
						|
         NUM_ALL_ROW_BLOCKS = ITMP + 2
 | 
						|
         JB_T = NUM_ALL_ROW_BLOCKS * N + 1
 | 
						|
*
 | 
						|
         DO IB = IB_BOTTOM, MB+1, -MB2
 | 
						|
*
 | 
						|
*           Determine the block size IMB for the current row block
 | 
						|
*           in the matrix A.
 | 
						|
*
 | 
						|
            IMB = MIN( M_PLUS_ONE - IB, MB2 )
 | 
						|
*
 | 
						|
*           Determine the column index JB_T for the current column block
 | 
						|
*           in the matrix T.
 | 
						|
*
 | 
						|
            JB_T = JB_T - N
 | 
						|
*
 | 
						|
*           Apply column blocks of H in the row block from right to left.
 | 
						|
*
 | 
						|
*           KB is the column index of the current column block reflector
 | 
						|
*           in the matrices T and V.
 | 
						|
*
 | 
						|
            DO KB = KB_LAST, 1, -NBLOCAL
 | 
						|
*
 | 
						|
*              Determine the size of the current column block KNB in
 | 
						|
*              the matrices T and V.
 | 
						|
*
 | 
						|
               KNB = MIN( NBLOCAL, N - KB + 1 )
 | 
						|
*
 | 
						|
               CALL DLARFB_GETT( 'I', IMB, N-KB+1, KNB,
 | 
						|
     $                     T( 1, JB_T+KB-1 ), LDT, A( KB, KB ), LDA,
 | 
						|
     $                     A( IB, KB ), LDA, WORK, KNB )
 | 
						|
*
 | 
						|
            END DO
 | 
						|
*
 | 
						|
         END DO
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     (2) Top row block of A.
 | 
						|
*     NOTE: If MB>=M, then we have only one row block of A of size M
 | 
						|
*     and we work on the entire matrix A.
 | 
						|
*
 | 
						|
      MB1 = MIN( MB, M )
 | 
						|
*
 | 
						|
*     Apply column blocks of H in the top row block from right to left.
 | 
						|
*
 | 
						|
*     KB is the column index of the current block reflector in
 | 
						|
*     the matrices T and V.
 | 
						|
*
 | 
						|
      DO KB = KB_LAST, 1, -NBLOCAL
 | 
						|
*
 | 
						|
*        Determine the size of the current column block KNB in
 | 
						|
*        the matrices T and V.
 | 
						|
*
 | 
						|
         KNB = MIN( NBLOCAL, N - KB + 1 )
 | 
						|
*
 | 
						|
         IF( MB1-KB-KNB+1.EQ.0 ) THEN
 | 
						|
*
 | 
						|
*           In SLARFB_GETT parameters, when M=0, then the matrix B
 | 
						|
*           does not exist, hence we need to pass a dummy array
 | 
						|
*           reference DUMMY(1,1) to B with LDDUMMY=1.
 | 
						|
*
 | 
						|
            CALL DLARFB_GETT( 'N', 0, N-KB+1, KNB,
 | 
						|
     $                        T( 1, KB ), LDT, A( KB, KB ), LDA,
 | 
						|
     $                        DUMMY( 1, 1 ), 1, WORK, KNB )
 | 
						|
         ELSE
 | 
						|
            CALL DLARFB_GETT( 'N', MB1-KB-KNB+1, N-KB+1, KNB,
 | 
						|
     $                        T( 1, KB ), LDT, A( KB, KB ), LDA,
 | 
						|
     $                        A( KB+KNB, KB), LDA, WORK, KNB )
 | 
						|
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      END DO
 | 
						|
*
 | 
						|
      WORK( 1 ) = DBLE( LWORKOPT )
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DORGTSQR_ROW
 | 
						|
*
 | 
						|
      END
 |