230 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			230 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DOPGTR
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DOPGTR + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dopgtr.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dopgtr.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dopgtr.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DOPGTR( UPLO, N, AP, TAU, Q, LDQ, WORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, LDQ, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   AP( * ), Q( LDQ, * ), TAU( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DOPGTR generates a real orthogonal matrix Q which is defined as the
 | 
						|
*> product of n-1 elementary reflectors H(i) of order n, as returned by
 | 
						|
*> DSPTRD using packed storage:
 | 
						|
*>
 | 
						|
*> if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
 | 
						|
*>
 | 
						|
*> if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U': Upper triangular packed storage used in previous
 | 
						|
*>                 call to DSPTRD;
 | 
						|
*>          = 'L': Lower triangular packed storage used in previous
 | 
						|
*>                 call to DSPTRD.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix Q. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
 | 
						|
*>          The vectors which define the elementary reflectors, as
 | 
						|
*>          returned by DSPTRD.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>          TAU(i) must contain the scalar factor of the elementary
 | 
						|
*>          reflector H(i), as returned by DSPTRD.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
 | 
						|
*>          The N-by-N orthogonal matrix Q.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>          The leading dimension of the array Q. LDQ >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DOPGTR( UPLO, N, AP, TAU, Q, LDQ, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, LDQ, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   AP( * ), Q( LDQ, * ), TAU( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            I, IINFO, IJ, J
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DORG2L, DORG2R, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DOPGTR', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*        Q was determined by a call to DSPTRD with UPLO = 'U'
 | 
						|
*
 | 
						|
*        Unpack the vectors which define the elementary reflectors and
 | 
						|
*        set the last row and column of Q equal to those of the unit
 | 
						|
*        matrix
 | 
						|
*
 | 
						|
         IJ = 2
 | 
						|
         DO 20 J = 1, N - 1
 | 
						|
            DO 10 I = 1, J - 1
 | 
						|
               Q( I, J ) = AP( IJ )
 | 
						|
               IJ = IJ + 1
 | 
						|
   10       CONTINUE
 | 
						|
            IJ = IJ + 2
 | 
						|
            Q( N, J ) = ZERO
 | 
						|
   20    CONTINUE
 | 
						|
         DO 30 I = 1, N - 1
 | 
						|
            Q( I, N ) = ZERO
 | 
						|
   30    CONTINUE
 | 
						|
         Q( N, N ) = ONE
 | 
						|
*
 | 
						|
*        Generate Q(1:n-1,1:n-1)
 | 
						|
*
 | 
						|
         CALL DORG2L( N-1, N-1, N-1, Q, LDQ, TAU, WORK, IINFO )
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Q was determined by a call to DSPTRD with UPLO = 'L'.
 | 
						|
*
 | 
						|
*        Unpack the vectors which define the elementary reflectors and
 | 
						|
*        set the first row and column of Q equal to those of the unit
 | 
						|
*        matrix
 | 
						|
*
 | 
						|
         Q( 1, 1 ) = ONE
 | 
						|
         DO 40 I = 2, N
 | 
						|
            Q( I, 1 ) = ZERO
 | 
						|
   40    CONTINUE
 | 
						|
         IJ = 3
 | 
						|
         DO 60 J = 2, N
 | 
						|
            Q( 1, J ) = ZERO
 | 
						|
            DO 50 I = J + 1, N
 | 
						|
               Q( I, J ) = AP( IJ )
 | 
						|
               IJ = IJ + 1
 | 
						|
   50       CONTINUE
 | 
						|
            IJ = IJ + 2
 | 
						|
   60    CONTINUE
 | 
						|
         IF( N.GT.1 ) THEN
 | 
						|
*
 | 
						|
*           Generate Q(2:n,2:n)
 | 
						|
*
 | 
						|
            CALL DORG2R( N-1, N-1, N-1, Q( 2, 2 ), LDQ, TAU, WORK,
 | 
						|
     $                   IINFO )
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DOPGTR
 | 
						|
*
 | 
						|
      END
 |