397 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			397 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZHERK
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       DOUBLE PRECISION ALPHA,BETA
 | 
						|
*       INTEGER K,LDA,LDC,N
 | 
						|
*       CHARACTER TRANS,UPLO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16 A(LDA,*),C(LDC,*)
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZHERK  performs one of the hermitian rank k operations
 | 
						|
*>
 | 
						|
*>    C := alpha*A*A**H + beta*C,
 | 
						|
*>
 | 
						|
*> or
 | 
						|
*>
 | 
						|
*>    C := alpha*A**H*A + beta*C,
 | 
						|
*>
 | 
						|
*> where  alpha and beta  are  real scalars,  C is an  n by n  hermitian
 | 
						|
*> matrix and  A  is an  n by k  matrix in the  first case and a  k by n
 | 
						|
*> matrix in the second case.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
 | 
						|
*>           triangular  part  of the  array  C  is to be  referenced  as
 | 
						|
*>           follows:
 | 
						|
*>
 | 
						|
*>              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
 | 
						|
*>                                  is to be referenced.
 | 
						|
*>
 | 
						|
*>              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
 | 
						|
*>                                  is to be referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>           On entry,  TRANS  specifies the operation to be performed as
 | 
						|
*>           follows:
 | 
						|
*>
 | 
						|
*>              TRANS = 'N' or 'n'   C := alpha*A*A**H + beta*C.
 | 
						|
*>
 | 
						|
*>              TRANS = 'C' or 'c'   C := alpha*A**H*A + beta*C.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           On entry,  N specifies the order of the matrix C.  N must be
 | 
						|
*>           at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
 | 
						|
*>           of  columns   of  the   matrix   A,   and  on   entry   with
 | 
						|
*>           TRANS = 'C' or 'c',  K  specifies  the number of rows of the
 | 
						|
*>           matrix A.  K must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is DOUBLE PRECISION .
 | 
						|
*>           On entry, ALPHA specifies the scalar alpha.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is
 | 
						|
*>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
 | 
						|
*>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
 | 
						|
*>           part of the array  A  must contain the matrix  A,  otherwise
 | 
						|
*>           the leading  k by n  part of the array  A  must contain  the
 | 
						|
*>           matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>           On entry, LDA specifies the first dimension of A as declared
 | 
						|
*>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
 | 
						|
*>           then  LDA must be at least  max( 1, n ), otherwise  LDA must
 | 
						|
*>           be at least  max( 1, k ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is DOUBLE PRECISION.
 | 
						|
*>           On entry, BETA specifies the scalar beta.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is COMPLEX*16 array, dimension ( LDC, N )
 | 
						|
*>           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
 | 
						|
*>           upper triangular part of the array C must contain the upper
 | 
						|
*>           triangular part  of the  hermitian matrix  and the strictly
 | 
						|
*>           lower triangular part of C is not referenced.  On exit, the
 | 
						|
*>           upper triangular part of the array  C is overwritten by the
 | 
						|
*>           upper triangular part of the updated matrix.
 | 
						|
*>           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
 | 
						|
*>           lower triangular part of the array C must contain the lower
 | 
						|
*>           triangular part  of the  hermitian matrix  and the strictly
 | 
						|
*>           upper triangular part of C is not referenced.  On exit, the
 | 
						|
*>           lower triangular part of the array  C is overwritten by the
 | 
						|
*>           lower triangular part of the updated matrix.
 | 
						|
*>           Note that the imaginary parts of the diagonal elements need
 | 
						|
*>           not be set,  they are assumed to be zero,  and on exit they
 | 
						|
*>           are set to zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>           On entry, LDC specifies the first dimension of C as declared
 | 
						|
*>           in  the  calling  (sub)  program.   LDC  must  be  at  least
 | 
						|
*>           max( 1, n ).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup complex16_blas_level3
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  Level 3 Blas routine.
 | 
						|
*>
 | 
						|
*>  -- Written on 8-February-1989.
 | 
						|
*>     Jack Dongarra, Argonne National Laboratory.
 | 
						|
*>     Iain Duff, AERE Harwell.
 | 
						|
*>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
 | 
						|
*>     Sven Hammarling, Numerical Algorithms Group Ltd.
 | 
						|
*>
 | 
						|
*>  -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1.
 | 
						|
*>     Ed Anderson, Cray Research Inc.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
 | 
						|
*
 | 
						|
*  -- Reference BLAS level3 routine (version 3.7.0) --
 | 
						|
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      DOUBLE PRECISION ALPHA,BETA
 | 
						|
      INTEGER K,LDA,LDC,N
 | 
						|
      CHARACTER TRANS,UPLO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16 A(LDA,*),C(LDC,*)
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL LSAME
 | 
						|
      EXTERNAL LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC DBLE,DCMPLX,DCONJG,MAX
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      COMPLEX*16 TEMP
 | 
						|
      DOUBLE PRECISION RTEMP
 | 
						|
      INTEGER I,INFO,J,L,NROWA
 | 
						|
      LOGICAL UPPER
 | 
						|
*     ..
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION ONE,ZERO
 | 
						|
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      IF (LSAME(TRANS,'N')) THEN
 | 
						|
          NROWA = N
 | 
						|
      ELSE
 | 
						|
          NROWA = K
 | 
						|
      END IF
 | 
						|
      UPPER = LSAME(UPLO,'U')
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
 | 
						|
          INFO = 1
 | 
						|
      ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND.
 | 
						|
     +         (.NOT.LSAME(TRANS,'C'))) THEN
 | 
						|
          INFO = 2
 | 
						|
      ELSE IF (N.LT.0) THEN
 | 
						|
          INFO = 3
 | 
						|
      ELSE IF (K.LT.0) THEN
 | 
						|
          INFO = 4
 | 
						|
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
 | 
						|
          INFO = 7
 | 
						|
      ELSE IF (LDC.LT.MAX(1,N)) THEN
 | 
						|
          INFO = 10
 | 
						|
      END IF
 | 
						|
      IF (INFO.NE.0) THEN
 | 
						|
          CALL XERBLA('ZHERK ',INFO)
 | 
						|
          RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR.
 | 
						|
     +    (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
 | 
						|
*
 | 
						|
*     And when  alpha.eq.zero.
 | 
						|
*
 | 
						|
      IF (ALPHA.EQ.ZERO) THEN
 | 
						|
          IF (UPPER) THEN
 | 
						|
              IF (BETA.EQ.ZERO) THEN
 | 
						|
                  DO 20 J = 1,N
 | 
						|
                      DO 10 I = 1,J
 | 
						|
                          C(I,J) = ZERO
 | 
						|
   10                 CONTINUE
 | 
						|
   20             CONTINUE
 | 
						|
              ELSE
 | 
						|
                  DO 40 J = 1,N
 | 
						|
                      DO 30 I = 1,J - 1
 | 
						|
                          C(I,J) = BETA*C(I,J)
 | 
						|
   30                 CONTINUE
 | 
						|
                      C(J,J) = BETA*DBLE(C(J,J))
 | 
						|
   40             CONTINUE
 | 
						|
              END IF
 | 
						|
          ELSE
 | 
						|
              IF (BETA.EQ.ZERO) THEN
 | 
						|
                  DO 60 J = 1,N
 | 
						|
                      DO 50 I = J,N
 | 
						|
                          C(I,J) = ZERO
 | 
						|
   50                 CONTINUE
 | 
						|
   60             CONTINUE
 | 
						|
              ELSE
 | 
						|
                  DO 80 J = 1,N
 | 
						|
                      C(J,J) = BETA*DBLE(C(J,J))
 | 
						|
                      DO 70 I = J + 1,N
 | 
						|
                          C(I,J) = BETA*C(I,J)
 | 
						|
   70                 CONTINUE
 | 
						|
   80             CONTINUE
 | 
						|
              END IF
 | 
						|
          END IF
 | 
						|
          RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations.
 | 
						|
*
 | 
						|
      IF (LSAME(TRANS,'N')) THEN
 | 
						|
*
 | 
						|
*        Form  C := alpha*A*A**H + beta*C.
 | 
						|
*
 | 
						|
          IF (UPPER) THEN
 | 
						|
              DO 130 J = 1,N
 | 
						|
                  IF (BETA.EQ.ZERO) THEN
 | 
						|
                      DO 90 I = 1,J
 | 
						|
                          C(I,J) = ZERO
 | 
						|
   90                 CONTINUE
 | 
						|
                  ELSE IF (BETA.NE.ONE) THEN
 | 
						|
                      DO 100 I = 1,J - 1
 | 
						|
                          C(I,J) = BETA*C(I,J)
 | 
						|
  100                 CONTINUE
 | 
						|
                      C(J,J) = BETA*DBLE(C(J,J))
 | 
						|
                  ELSE
 | 
						|
                      C(J,J) = DBLE(C(J,J))
 | 
						|
                  END IF
 | 
						|
                  DO 120 L = 1,K
 | 
						|
                      IF (A(J,L).NE.DCMPLX(ZERO)) THEN
 | 
						|
                          TEMP = ALPHA*DCONJG(A(J,L))
 | 
						|
                          DO 110 I = 1,J - 1
 | 
						|
                              C(I,J) = C(I,J) + TEMP*A(I,L)
 | 
						|
  110                     CONTINUE
 | 
						|
                          C(J,J) = DBLE(C(J,J)) + DBLE(TEMP*A(I,L))
 | 
						|
                      END IF
 | 
						|
  120             CONTINUE
 | 
						|
  130         CONTINUE
 | 
						|
          ELSE
 | 
						|
              DO 180 J = 1,N
 | 
						|
                  IF (BETA.EQ.ZERO) THEN
 | 
						|
                      DO 140 I = J,N
 | 
						|
                          C(I,J) = ZERO
 | 
						|
  140                 CONTINUE
 | 
						|
                  ELSE IF (BETA.NE.ONE) THEN
 | 
						|
                      C(J,J) = BETA*DBLE(C(J,J))
 | 
						|
                      DO 150 I = J + 1,N
 | 
						|
                          C(I,J) = BETA*C(I,J)
 | 
						|
  150                 CONTINUE
 | 
						|
                  ELSE
 | 
						|
                      C(J,J) = DBLE(C(J,J))
 | 
						|
                  END IF
 | 
						|
                  DO 170 L = 1,K
 | 
						|
                      IF (A(J,L).NE.DCMPLX(ZERO)) THEN
 | 
						|
                          TEMP = ALPHA*DCONJG(A(J,L))
 | 
						|
                          C(J,J) = DBLE(C(J,J)) + DBLE(TEMP*A(J,L))
 | 
						|
                          DO 160 I = J + 1,N
 | 
						|
                              C(I,J) = C(I,J) + TEMP*A(I,L)
 | 
						|
  160                     CONTINUE
 | 
						|
                      END IF
 | 
						|
  170             CONTINUE
 | 
						|
  180         CONTINUE
 | 
						|
          END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form  C := alpha*A**H*A + beta*C.
 | 
						|
*
 | 
						|
          IF (UPPER) THEN
 | 
						|
              DO 220 J = 1,N
 | 
						|
                  DO 200 I = 1,J - 1
 | 
						|
                      TEMP = ZERO
 | 
						|
                      DO 190 L = 1,K
 | 
						|
                          TEMP = TEMP + DCONJG(A(L,I))*A(L,J)
 | 
						|
  190                 CONTINUE
 | 
						|
                      IF (BETA.EQ.ZERO) THEN
 | 
						|
                          C(I,J) = ALPHA*TEMP
 | 
						|
                      ELSE
 | 
						|
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | 
						|
                      END IF
 | 
						|
  200             CONTINUE
 | 
						|
                  RTEMP = ZERO
 | 
						|
                  DO 210 L = 1,K
 | 
						|
                      RTEMP = RTEMP + DCONJG(A(L,J))*A(L,J)
 | 
						|
  210             CONTINUE
 | 
						|
                  IF (BETA.EQ.ZERO) THEN
 | 
						|
                      C(J,J) = ALPHA*RTEMP
 | 
						|
                  ELSE
 | 
						|
                      C(J,J) = ALPHA*RTEMP + BETA*DBLE(C(J,J))
 | 
						|
                  END IF
 | 
						|
  220         CONTINUE
 | 
						|
          ELSE
 | 
						|
              DO 260 J = 1,N
 | 
						|
                  RTEMP = ZERO
 | 
						|
                  DO 230 L = 1,K
 | 
						|
                      RTEMP = RTEMP + DCONJG(A(L,J))*A(L,J)
 | 
						|
  230             CONTINUE
 | 
						|
                  IF (BETA.EQ.ZERO) THEN
 | 
						|
                      C(J,J) = ALPHA*RTEMP
 | 
						|
                  ELSE
 | 
						|
                      C(J,J) = ALPHA*RTEMP + BETA*DBLE(C(J,J))
 | 
						|
                  END IF
 | 
						|
                  DO 250 I = J + 1,N
 | 
						|
                      TEMP = ZERO
 | 
						|
                      DO 240 L = 1,K
 | 
						|
                          TEMP = TEMP + DCONJG(A(L,I))*A(L,J)
 | 
						|
  240                 CONTINUE
 | 
						|
                      IF (BETA.EQ.ZERO) THEN
 | 
						|
                          C(I,J) = ALPHA*TEMP
 | 
						|
                      ELSE
 | 
						|
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | 
						|
                      END IF
 | 
						|
  250             CONTINUE
 | 
						|
  260         CONTINUE
 | 
						|
          END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZHERK .
 | 
						|
*
 | 
						|
      END
 |