OpenBLAS/lapack-netlib/SRC/DEPRECATED/dlahrd.c

606 lines
18 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#define F2C_proc_par_types 1
/* Table of constant values */
static doublereal c_b4 = -1.;
static doublereal c_b5 = 1.;
static integer c__1 = 1;
static doublereal c_b38 = 0.;
/* > \brief \b DLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below th
e k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformati
on to the unreduced part of A. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DLAHRD + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlahrd.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlahrd.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlahrd.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY ) */
/* INTEGER K, LDA, LDT, LDY, N, NB */
/* DOUBLE PRECISION A( LDA, * ), T( LDT, NB ), TAU( NB ), */
/* $ Y( LDY, NB ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine DLAHR2. */
/* > */
/* > DLAHRD reduces the first NB columns of a real general n-by-(n-k+1) */
/* > matrix A so that elements below the k-th subdiagonal are zero. The */
/* > reduction is performed by an orthogonal similarity transformation */
/* > Q**T * A * Q. The routine returns the matrices V and T which determine */
/* > Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER */
/* > The offset for the reduction. Elements below the k-th */
/* > subdiagonal in the first NB columns are reduced to zero. */
/* > \endverbatim */
/* > */
/* > \param[in] NB */
/* > \verbatim */
/* > NB is INTEGER */
/* > The number of columns to be reduced. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N-K+1) */
/* > On entry, the n-by-(n-k+1) general matrix A. */
/* > On exit, the elements on and above the k-th subdiagonal in */
/* > the first NB columns are overwritten with the corresponding */
/* > elements of the reduced matrix; the elements below the k-th */
/* > subdiagonal, with the array TAU, represent the matrix Q as a */
/* > product of elementary reflectors. The other columns of A are */
/* > unchanged. See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is DOUBLE PRECISION array, dimension (NB) */
/* > The scalar factors of the elementary reflectors. See Further */
/* > Details. */
/* > \endverbatim */
/* > */
/* > \param[out] T */
/* > \verbatim */
/* > T is DOUBLE PRECISION array, dimension (LDT,NB) */
/* > The upper triangular matrix T. */
/* > \endverbatim */
/* > */
/* > \param[in] LDT */
/* > \verbatim */
/* > LDT is INTEGER */
/* > The leading dimension of the array T. LDT >= NB. */
/* > \endverbatim */
/* > */
/* > \param[out] Y */
/* > \verbatim */
/* > Y is DOUBLE PRECISION array, dimension (LDY,NB) */
/* > The n-by-nb matrix Y. */
/* > \endverbatim */
/* > */
/* > \param[in] LDY */
/* > \verbatim */
/* > LDY is INTEGER */
/* > The leading dimension of the array Y. LDY >= N. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup doubleOTHERauxiliary */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix Q is represented as a product of nb elementary reflectors */
/* > */
/* > Q = H(1) H(2) . . . H(nb). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**T */
/* > */
/* > where tau is a real scalar, and v is a real vector with */
/* > v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in */
/* > A(i+k+1:n,i), and tau in TAU(i). */
/* > */
/* > The elements of the vectors v together form the (n-k+1)-by-nb matrix */
/* > V which is needed, with T and Y, to apply the transformation to the */
/* > unreduced part of the matrix, using an update of the form: */
/* > A := (I - V*T*V**T) * (A - Y*V**T). */
/* > */
/* > The contents of A on exit are illustrated by the following example */
/* > with n = 7, k = 3 and nb = 2: */
/* > */
/* > ( a h a a a ) */
/* > ( a h a a a ) */
/* > ( a h a a a ) */
/* > ( h h a a a ) */
/* > ( v1 h a a a ) */
/* > ( v1 v2 a a a ) */
/* > ( v1 v2 a a a ) */
/* > */
/* > where a denotes an element of the original matrix A, h denotes a */
/* > modified element of the upper Hessenberg matrix H, and vi denotes an */
/* > element of the vector defining H(i). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ void dlahrd_(integer *n, integer *k, integer *nb, doublereal *
a, integer *lda, doublereal *tau, doublereal *t, integer *ldt,
doublereal *y, integer *ldy)
{
/* System generated locals */
integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2,
i__3;
doublereal d__1;
/* Local variables */
integer i__;
extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
integer *), dgemv_(char *, integer *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
doublereal *, integer *), dcopy_(integer *, doublereal *,
integer *, doublereal *, integer *), daxpy_(integer *, doublereal
*, doublereal *, integer *, doublereal *, integer *), dtrmv_(char
*, char *, char *, integer *, doublereal *, integer *, doublereal
*, integer *);
doublereal ei;
extern /* Subroutine */ void dlarfg_(integer *, doublereal *, doublereal *,
integer *, doublereal *);
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* Quick return if possible */
/* Parameter adjustments */
--tau;
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
t_dim1 = *ldt;
t_offset = 1 + t_dim1 * 1;
t -= t_offset;
y_dim1 = *ldy;
y_offset = 1 + y_dim1 * 1;
y -= y_offset;
/* Function Body */
if (*n <= 1) {
return;
}
i__1 = *nb;
for (i__ = 1; i__ <= i__1; ++i__) {
if (i__ > 1) {
/* Update A(1:n,i) */
/* Compute i-th column of A - Y * V**T */
i__2 = i__ - 1;
dgemv_("No transpose", n, &i__2, &c_b4, &y[y_offset], ldy, &a[*k
+ i__ - 1 + a_dim1], lda, &c_b5, &a[i__ * a_dim1 + 1], &
c__1);
/* Apply I - V * T**T * V**T to this column (call it b) from the */
/* left, using the last column of T as workspace */
/* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows) */
/* ( V2 ) ( b2 ) */
/* where V1 is unit lower triangular */
/* w := V1**T * b1 */
i__2 = i__ - 1;
dcopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 +
1], &c__1);
i__2 = i__ - 1;
dtrmv_("Lower", "Transpose", "Unit", &i__2, &a[*k + 1 + a_dim1],
lda, &t[*nb * t_dim1 + 1], &c__1);
/* w := w + V2**T *b2 */
i__2 = *n - *k - i__ + 1;
i__3 = i__ - 1;
dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1],
lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b5, &t[*nb *
t_dim1 + 1], &c__1);
/* w := T**T *w */
i__2 = i__ - 1;
dtrmv_("Upper", "Transpose", "Non-unit", &i__2, &t[t_offset], ldt,
&t[*nb * t_dim1 + 1], &c__1);
/* b2 := b2 - V2*w */
i__2 = *n - *k - i__ + 1;
i__3 = i__ - 1;
dgemv_("No transpose", &i__2, &i__3, &c_b4, &a[*k + i__ + a_dim1],
lda, &t[*nb * t_dim1 + 1], &c__1, &c_b5, &a[*k + i__ +
i__ * a_dim1], &c__1);
/* b1 := b1 - V1*w */
i__2 = i__ - 1;
dtrmv_("Lower", "No transpose", "Unit", &i__2, &a[*k + 1 + a_dim1]
, lda, &t[*nb * t_dim1 + 1], &c__1);
i__2 = i__ - 1;
daxpy_(&i__2, &c_b4, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 + i__
* a_dim1], &c__1);
a[*k + i__ - 1 + (i__ - 1) * a_dim1] = ei;
}
/* Generate the elementary reflector H(i) to annihilate */
/* A(k+i+1:n,i) */
i__2 = *n - *k - i__ + 1;
/* Computing MIN */
i__3 = *k + i__ + 1;
dlarfg_(&i__2, &a[*k + i__ + i__ * a_dim1], &a[f2cmin(i__3,*n) + i__ *
a_dim1], &c__1, &tau[i__]);
ei = a[*k + i__ + i__ * a_dim1];
a[*k + i__ + i__ * a_dim1] = 1.;
/* Compute Y(1:n,i) */
i__2 = *n - *k - i__ + 1;
dgemv_("No transpose", n, &i__2, &c_b5, &a[(i__ + 1) * a_dim1 + 1],
lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &y[i__ *
y_dim1 + 1], &c__1);
i__2 = *n - *k - i__ + 1;
i__3 = i__ - 1;
dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1], lda, &
a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &t[i__ * t_dim1 +
1], &c__1);
i__2 = i__ - 1;
dgemv_("No transpose", n, &i__2, &c_b4, &y[y_offset], ldy, &t[i__ *
t_dim1 + 1], &c__1, &c_b5, &y[i__ * y_dim1 + 1], &c__1);
dscal_(n, &tau[i__], &y[i__ * y_dim1 + 1], &c__1);
/* Compute T(1:i,i) */
i__2 = i__ - 1;
d__1 = -tau[i__];
dscal_(&i__2, &d__1, &t[i__ * t_dim1 + 1], &c__1);
i__2 = i__ - 1;
dtrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[t_offset], ldt,
&t[i__ * t_dim1 + 1], &c__1)
;
t[i__ + i__ * t_dim1] = tau[i__];
/* L10: */
}
a[*k + *nb + *nb * a_dim1] = ei;
return;
/* End of DLAHRD */
} /* dlahrd_ */