353 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			353 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZLANTR + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlantr.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlantr.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlantr.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       DOUBLE PRECISION FUNCTION ZLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
 | |
| *                        WORK )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          DIAG, NORM, UPLO
 | |
| *       INTEGER            LDA, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   WORK( * )
 | |
| *       COMPLEX*16         A( LDA, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZLANTR  returns the value of the one norm,  or the Frobenius norm, or
 | |
| *> the  infinity norm,  or the  element of  largest absolute value  of a
 | |
| *> trapezoidal or triangular matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \return ZLANTR
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    ZLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 | |
| *>             (
 | |
| *>             ( norm1(A),         NORM = '1', 'O' or 'o'
 | |
| *>             (
 | |
| *>             ( normI(A),         NORM = 'I' or 'i'
 | |
| *>             (
 | |
| *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 | |
| *>
 | |
| *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
 | |
| *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 | |
| *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
 | |
| *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NORM
 | |
| *> \verbatim
 | |
| *>          NORM is CHARACTER*1
 | |
| *>          Specifies the value to be returned in ZLANTR as described
 | |
| *>          above.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the matrix A is upper or lower trapezoidal.
 | |
| *>          = 'U':  Upper trapezoidal
 | |
| *>          = 'L':  Lower trapezoidal
 | |
| *>          Note that A is triangular instead of trapezoidal if M = N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIAG
 | |
| *> \verbatim
 | |
| *>          DIAG is CHARACTER*1
 | |
| *>          Specifies whether or not the matrix A has unit diagonal.
 | |
| *>          = 'N':  Non-unit diagonal
 | |
| *>          = 'U':  Unit diagonal
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0, and if
 | |
| *>          UPLO = 'U', M <= N.  When M = 0, ZLANTR is set to zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0, and if
 | |
| *>          UPLO = 'L', N <= M.  When N = 0, ZLANTR is set to zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          The trapezoidal matrix A (A is triangular if M = N).
 | |
| *>          If UPLO = 'U', the leading m by n upper trapezoidal part of
 | |
| *>          the array A contains the upper trapezoidal matrix, and the
 | |
| *>          strictly lower triangular part of A is not referenced.
 | |
| *>          If UPLO = 'L', the leading m by n lower trapezoidal part of
 | |
| *>          the array A contains the lower trapezoidal matrix, and the
 | |
| *>          strictly upper triangular part of A is not referenced.  Note
 | |
| *>          that when DIAG = 'U', the diagonal elements of A are not
 | |
| *>          referenced and are assumed to be one.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(M,1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 | |
| *>          where LWORK >= M when NORM = 'I'; otherwise, WORK is not
 | |
| *>          referenced.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complex16OTHERauxiliary
 | |
| *
 | |
| *  =====================================================================
 | |
|       DOUBLE PRECISION FUNCTION ZLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
 | |
|      $                 WORK )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          DIAG, NORM, UPLO
 | |
|       INTEGER            LDA, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   WORK( * )
 | |
|       COMPLEX*16         A( LDA, * )
 | |
| *     ..
 | |
| *
 | |
| * =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UDIAG
 | |
|       INTEGER            I, J
 | |
|       DOUBLE PRECISION   SCALE, SUM, VALUE
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME, DISNAN
 | |
|       EXTERNAL           LSAME, DISNAN
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZLASSQ
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( MIN( M, N ).EQ.0 ) THEN
 | |
|          VALUE = ZERO
 | |
|       ELSE IF( LSAME( NORM, 'M' ) ) THEN
 | |
| *
 | |
| *        Find max(abs(A(i,j))).
 | |
| *
 | |
|          IF( LSAME( DIAG, 'U' ) ) THEN
 | |
|             VALUE = ONE
 | |
|             IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|                DO 20 J = 1, N
 | |
|                   DO 10 I = 1, MIN( M, J-1 )
 | |
|                      SUM = ABS( A( I, J ) )
 | |
|                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | |
|    10             CONTINUE
 | |
|    20          CONTINUE
 | |
|             ELSE
 | |
|                DO 40 J = 1, N
 | |
|                   DO 30 I = J + 1, M
 | |
|                      SUM = ABS( A( I, J ) )
 | |
|                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | |
|    30             CONTINUE
 | |
|    40          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             VALUE = ZERO
 | |
|             IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|                DO 60 J = 1, N
 | |
|                   DO 50 I = 1, MIN( M, J )
 | |
|                      SUM = ABS( A( I, J ) )
 | |
|                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | |
|    50             CONTINUE
 | |
|    60          CONTINUE
 | |
|             ELSE
 | |
|                DO 80 J = 1, N
 | |
|                   DO 70 I = J, M
 | |
|                      SUM = ABS( A( I, J ) )
 | |
|                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | |
|    70             CONTINUE
 | |
|    80          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
 | |
| *
 | |
| *        Find norm1(A).
 | |
| *
 | |
|          VALUE = ZERO
 | |
|          UDIAG = LSAME( DIAG, 'U' )
 | |
|          IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|             DO 110 J = 1, N
 | |
|                IF( ( UDIAG ) .AND. ( J.LE.M ) ) THEN
 | |
|                   SUM = ONE
 | |
|                   DO 90 I = 1, J - 1
 | |
|                      SUM = SUM + ABS( A( I, J ) )
 | |
|    90             CONTINUE
 | |
|                ELSE
 | |
|                   SUM = ZERO
 | |
|                   DO 100 I = 1, MIN( M, J )
 | |
|                      SUM = SUM + ABS( A( I, J ) )
 | |
|   100             CONTINUE
 | |
|                END IF
 | |
|                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | |
|   110       CONTINUE
 | |
|          ELSE
 | |
|             DO 140 J = 1, N
 | |
|                IF( UDIAG ) THEN
 | |
|                   SUM = ONE
 | |
|                   DO 120 I = J + 1, M
 | |
|                      SUM = SUM + ABS( A( I, J ) )
 | |
|   120             CONTINUE
 | |
|                ELSE
 | |
|                   SUM = ZERO
 | |
|                   DO 130 I = J, M
 | |
|                      SUM = SUM + ABS( A( I, J ) )
 | |
|   130             CONTINUE
 | |
|                END IF
 | |
|                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | |
|   140       CONTINUE
 | |
|          END IF
 | |
|       ELSE IF( LSAME( NORM, 'I' ) ) THEN
 | |
| *
 | |
| *        Find normI(A).
 | |
| *
 | |
|          IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|             IF( LSAME( DIAG, 'U' ) ) THEN
 | |
|                DO 150 I = 1, M
 | |
|                   WORK( I ) = ONE
 | |
|   150          CONTINUE
 | |
|                DO 170 J = 1, N
 | |
|                   DO 160 I = 1, MIN( M, J-1 )
 | |
|                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
 | |
|   160             CONTINUE
 | |
|   170          CONTINUE
 | |
|             ELSE
 | |
|                DO 180 I = 1, M
 | |
|                   WORK( I ) = ZERO
 | |
|   180          CONTINUE
 | |
|                DO 200 J = 1, N
 | |
|                   DO 190 I = 1, MIN( M, J )
 | |
|                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
 | |
|   190             CONTINUE
 | |
|   200          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IF( LSAME( DIAG, 'U' ) ) THEN
 | |
|                DO 210 I = 1, MIN( M, N )
 | |
|                   WORK( I ) = ONE
 | |
|   210          CONTINUE
 | |
|                DO 220 I = N + 1, M
 | |
|                   WORK( I ) = ZERO
 | |
|   220          CONTINUE
 | |
|                DO 240 J = 1, N
 | |
|                   DO 230 I = J + 1, M
 | |
|                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
 | |
|   230             CONTINUE
 | |
|   240          CONTINUE
 | |
|             ELSE
 | |
|                DO 250 I = 1, M
 | |
|                   WORK( I ) = ZERO
 | |
|   250          CONTINUE
 | |
|                DO 270 J = 1, N
 | |
|                   DO 260 I = J, M
 | |
|                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
 | |
|   260             CONTINUE
 | |
|   270          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|          VALUE = ZERO
 | |
|          DO 280 I = 1, M
 | |
|             SUM = WORK( I )
 | |
|             IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | |
|   280    CONTINUE
 | |
|       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
 | |
| *
 | |
| *        Find normF(A).
 | |
| *
 | |
|          IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|             IF( LSAME( DIAG, 'U' ) ) THEN
 | |
|                SCALE = ONE
 | |
|                SUM = MIN( M, N )
 | |
|                DO 290 J = 2, N
 | |
|                   CALL ZLASSQ( MIN( M, J-1 ), A( 1, J ), 1, SCALE, SUM )
 | |
|   290          CONTINUE
 | |
|             ELSE
 | |
|                SCALE = ZERO
 | |
|                SUM = ONE
 | |
|                DO 300 J = 1, N
 | |
|                   CALL ZLASSQ( MIN( M, J ), A( 1, J ), 1, SCALE, SUM )
 | |
|   300          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IF( LSAME( DIAG, 'U' ) ) THEN
 | |
|                SCALE = ONE
 | |
|                SUM = MIN( M, N )
 | |
|                DO 310 J = 1, N
 | |
|                   CALL ZLASSQ( M-J, A( MIN( M, J+1 ), J ), 1, SCALE,
 | |
|      $                         SUM )
 | |
|   310          CONTINUE
 | |
|             ELSE
 | |
|                SCALE = ZERO
 | |
|                SUM = ONE
 | |
|                DO 320 J = 1, N
 | |
|                   CALL ZLASSQ( M-J+1, A( J, J ), 1, SCALE, SUM )
 | |
|   320          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|          VALUE = SCALE*SQRT( SUM )
 | |
|       END IF
 | |
| *
 | |
|       ZLANTR = VALUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZLANTR
 | |
| *
 | |
|       END
 |