405 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			405 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLARRB provides limited bisection to locate eigenvalues for more accuracy.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLARRB + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarrb.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarrb.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarrb.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLARRB( N, D, LLD, IFIRST, ILAST, RTOL1,
 | |
| *                          RTOL2, OFFSET, W, WGAP, WERR, WORK, IWORK,
 | |
| *                          PIVMIN, SPDIAM, TWIST, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            IFIRST, ILAST, INFO, N, OFFSET, TWIST
 | |
| *       REAL               PIVMIN, RTOL1, RTOL2, SPDIAM
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       REAL               D( * ), LLD( * ), W( * ),
 | |
| *      $                   WERR( * ), WGAP( * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> Given the relatively robust representation(RRR) L D L^T, SLARRB
 | |
| *> does "limited" bisection to refine the eigenvalues of L D L^T,
 | |
| *> W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial
 | |
| *> guesses for these eigenvalues are input in W, the corresponding estimate
 | |
| *> of the error in these guesses and their gaps are input in WERR
 | |
| *> and WGAP, respectively. During bisection, intervals
 | |
| *> [left, right] are maintained by storing their mid-points and
 | |
| *> semi-widths in the arrays W and WERR respectively.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>          The N diagonal elements of the diagonal matrix D.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LLD
 | |
| *> \verbatim
 | |
| *>          LLD is REAL array, dimension (N-1)
 | |
| *>          The (N-1) elements L(i)*L(i)*D(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IFIRST
 | |
| *> \verbatim
 | |
| *>          IFIRST is INTEGER
 | |
| *>          The index of the first eigenvalue to be computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ILAST
 | |
| *> \verbatim
 | |
| *>          ILAST is INTEGER
 | |
| *>          The index of the last eigenvalue to be computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RTOL1
 | |
| *> \verbatim
 | |
| *>          RTOL1 is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RTOL2
 | |
| *> \verbatim
 | |
| *>          RTOL2 is REAL
 | |
| *>          Tolerance for the convergence of the bisection intervals.
 | |
| *>          An interval [LEFT,RIGHT] has converged if
 | |
| *>          RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
 | |
| *>          where GAP is the (estimated) distance to the nearest
 | |
| *>          eigenvalue.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] OFFSET
 | |
| *> \verbatim
 | |
| *>          OFFSET is INTEGER
 | |
| *>          Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFSET
 | |
| *>          through ILAST-OFFSET elements of these arrays are to be used.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] W
 | |
| *> \verbatim
 | |
| *>          W is REAL array, dimension (N)
 | |
| *>          On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
 | |
| *>          estimates of the eigenvalues of L D L^T indexed IFIRST through
 | |
| *>          ILAST.
 | |
| *>          On output, these estimates are refined.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] WGAP
 | |
| *> \verbatim
 | |
| *>          WGAP is REAL array, dimension (N-1)
 | |
| *>          On input, the (estimated) gaps between consecutive
 | |
| *>          eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap between
 | |
| *>          eigenvalues I and I+1. Note that if IFIRST = ILAST
 | |
| *>          then WGAP(IFIRST-OFFSET) must be set to ZERO.
 | |
| *>          On output, these gaps are refined.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] WERR
 | |
| *> \verbatim
 | |
| *>          WERR is REAL array, dimension (N)
 | |
| *>          On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are
 | |
| *>          the errors in the estimates of the corresponding elements in W.
 | |
| *>          On output, these errors are refined.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (2*N)
 | |
| *>          Workspace.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (2*N)
 | |
| *>          Workspace.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] PIVMIN
 | |
| *> \verbatim
 | |
| *>          PIVMIN is REAL
 | |
| *>          The minimum pivot in the Sturm sequence.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SPDIAM
 | |
| *> \verbatim
 | |
| *>          SPDIAM is REAL
 | |
| *>          The spectral diameter of the matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TWIST
 | |
| *> \verbatim
 | |
| *>          TWIST is INTEGER
 | |
| *>          The twist index for the twisted factorization that is used
 | |
| *>          for the negcount.
 | |
| *>          TWIST = N: Compute negcount from L D L^T - LAMBDA I = L+ D+ L+^T
 | |
| *>          TWIST = 1: Compute negcount from L D L^T - LAMBDA I = U- D- U-^T
 | |
| *>          TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(r) N(r)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          Error flag.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup OTHERauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> Beresford Parlett, University of California, Berkeley, USA \n
 | |
| *> Jim Demmel, University of California, Berkeley, USA \n
 | |
| *> Inderjit Dhillon, University of Texas, Austin, USA \n
 | |
| *> Osni Marques, LBNL/NERSC, USA \n
 | |
| *> Christof Voemel, University of California, Berkeley, USA
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLARRB( N, D, LLD, IFIRST, ILAST, RTOL1,
 | |
|      $                   RTOL2, OFFSET, W, WGAP, WERR, WORK, IWORK,
 | |
|      $                   PIVMIN, SPDIAM, TWIST, INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            IFIRST, ILAST, INFO, N, OFFSET, TWIST
 | |
|       REAL               PIVMIN, RTOL1, RTOL2, SPDIAM
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       REAL               D( * ), LLD( * ), W( * ),
 | |
|      $                   WERR( * ), WGAP( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, TWO, HALF
 | |
|       PARAMETER        ( ZERO = 0.0E0, TWO = 2.0E0,
 | |
|      $                   HALF = 0.5E0 )
 | |
|       INTEGER   MAXITR
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, I1, II, IP, ITER, K, NEGCNT, NEXT, NINT,
 | |
|      $                   OLNINT, PREV, R
 | |
|       REAL               BACK, CVRGD, GAP, LEFT, LGAP, MID, MNWDTH,
 | |
|      $                   RGAP, RIGHT, TMP, WIDTH
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            SLANEG
 | |
|       EXTERNAL           SLANEG
 | |
| *
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       MAXITR = INT( ( LOG( SPDIAM+PIVMIN )-LOG( PIVMIN ) ) /
 | |
|      $           LOG( TWO ) ) + 2
 | |
|       MNWDTH = TWO * PIVMIN
 | |
| *
 | |
|       R = TWIST
 | |
|       IF((R.LT.1).OR.(R.GT.N)) R = N
 | |
| *
 | |
| *     Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ].
 | |
| *     The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while
 | |
| *     Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 )
 | |
| *     for an unconverged interval is set to the index of the next unconverged
 | |
| *     interval, and is -1 or 0 for a converged interval. Thus a linked
 | |
| *     list of unconverged intervals is set up.
 | |
| *
 | |
|       I1 = IFIRST
 | |
| *     The number of unconverged intervals
 | |
|       NINT = 0
 | |
| *     The last unconverged interval found
 | |
|       PREV = 0
 | |
| 
 | |
|       RGAP = WGAP( I1-OFFSET )
 | |
|       DO 75 I = I1, ILAST
 | |
|          K = 2*I
 | |
|          II = I - OFFSET
 | |
|          LEFT = W( II ) - WERR( II )
 | |
|          RIGHT = W( II ) + WERR( II )
 | |
|          LGAP = RGAP
 | |
|          RGAP = WGAP( II )
 | |
|          GAP = MIN( LGAP, RGAP )
 | |
| 
 | |
| *        Make sure that [LEFT,RIGHT] contains the desired eigenvalue
 | |
| *        Compute negcount from dstqds facto L+D+L+^T = L D L^T - LEFT
 | |
| *
 | |
| *        Do while( NEGCNT(LEFT).GT.I-1 )
 | |
| *
 | |
|          BACK = WERR( II )
 | |
|  20      CONTINUE
 | |
|          NEGCNT = SLANEG( N, D, LLD, LEFT, PIVMIN, R )
 | |
|          IF( NEGCNT.GT.I-1 ) THEN
 | |
|             LEFT = LEFT - BACK
 | |
|             BACK = TWO*BACK
 | |
|             GO TO 20
 | |
|          END IF
 | |
| *
 | |
| *        Do while( NEGCNT(RIGHT).LT.I )
 | |
| *        Compute negcount from dstqds facto L+D+L+^T = L D L^T - RIGHT
 | |
| *
 | |
|          BACK = WERR( II )
 | |
|  50      CONTINUE
 | |
| 
 | |
|          NEGCNT = SLANEG( N, D, LLD, RIGHT, PIVMIN, R )
 | |
|           IF( NEGCNT.LT.I ) THEN
 | |
|              RIGHT = RIGHT + BACK
 | |
|              BACK = TWO*BACK
 | |
|              GO TO 50
 | |
|           END IF
 | |
|          WIDTH = HALF*ABS( LEFT - RIGHT )
 | |
|          TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
 | |
|          CVRGD = MAX(RTOL1*GAP,RTOL2*TMP)
 | |
|          IF( WIDTH.LE.CVRGD .OR. WIDTH.LE.MNWDTH ) THEN
 | |
| *           This interval has already converged and does not need refinement.
 | |
| *           (Note that the gaps might change through refining the
 | |
| *            eigenvalues, however, they can only get bigger.)
 | |
| *           Remove it from the list.
 | |
|             IWORK( K-1 ) = -1
 | |
| *           Make sure that I1 always points to the first unconverged interval
 | |
|             IF((I.EQ.I1).AND.(I.LT.ILAST)) I1 = I + 1
 | |
|             IF((PREV.GE.I1).AND.(I.LE.ILAST)) IWORK( 2*PREV-1 ) = I + 1
 | |
|          ELSE
 | |
| *           unconverged interval found
 | |
|             PREV = I
 | |
|             NINT = NINT + 1
 | |
|             IWORK( K-1 ) = I + 1
 | |
|             IWORK( K ) = NEGCNT
 | |
|          END IF
 | |
|          WORK( K-1 ) = LEFT
 | |
|          WORK( K ) = RIGHT
 | |
|  75   CONTINUE
 | |
| 
 | |
| *
 | |
| *     Do while( NINT.GT.0 ), i.e. there are still unconverged intervals
 | |
| *     and while (ITER.LT.MAXITR)
 | |
| *
 | |
|       ITER = 0
 | |
|  80   CONTINUE
 | |
|       PREV = I1 - 1
 | |
|       I = I1
 | |
|       OLNINT = NINT
 | |
| 
 | |
|       DO 100 IP = 1, OLNINT
 | |
|          K = 2*I
 | |
|          II = I - OFFSET
 | |
|          RGAP = WGAP( II )
 | |
|          LGAP = RGAP
 | |
|          IF(II.GT.1) LGAP = WGAP( II-1 )
 | |
|          GAP = MIN( LGAP, RGAP )
 | |
|          NEXT = IWORK( K-1 )
 | |
|          LEFT = WORK( K-1 )
 | |
|          RIGHT = WORK( K )
 | |
|          MID = HALF*( LEFT + RIGHT )
 | |
| 
 | |
| *        semiwidth of interval
 | |
|          WIDTH = RIGHT - MID
 | |
|          TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
 | |
|          CVRGD = MAX(RTOL1*GAP,RTOL2*TMP)
 | |
|          IF( ( WIDTH.LE.CVRGD ) .OR. ( WIDTH.LE.MNWDTH ).OR.
 | |
|      $       ( ITER.EQ.MAXITR ) )THEN
 | |
| *           reduce number of unconverged intervals
 | |
|             NINT = NINT - 1
 | |
| *           Mark interval as converged.
 | |
|             IWORK( K-1 ) = 0
 | |
|             IF( I1.EQ.I ) THEN
 | |
|                I1 = NEXT
 | |
|             ELSE
 | |
| *              Prev holds the last unconverged interval previously examined
 | |
|                IF(PREV.GE.I1) IWORK( 2*PREV-1 ) = NEXT
 | |
|             END IF
 | |
|             I = NEXT
 | |
|             GO TO 100
 | |
|          END IF
 | |
|          PREV = I
 | |
| *
 | |
| *        Perform one bisection step
 | |
| *
 | |
|          NEGCNT = SLANEG( N, D, LLD, MID, PIVMIN, R )
 | |
|          IF( NEGCNT.LE.I-1 ) THEN
 | |
|             WORK( K-1 ) = MID
 | |
|          ELSE
 | |
|             WORK( K ) = MID
 | |
|          END IF
 | |
|          I = NEXT
 | |
|  100  CONTINUE
 | |
|       ITER = ITER + 1
 | |
| *     do another loop if there are still unconverged intervals
 | |
| *     However, in the last iteration, all intervals are accepted
 | |
| *     since this is the best we can do.
 | |
|       IF( ( NINT.GT.0 ).AND.(ITER.LE.MAXITR) ) GO TO 80
 | |
| *
 | |
| *
 | |
| *     At this point, all the intervals have converged
 | |
|       DO 110 I = IFIRST, ILAST
 | |
|          K = 2*I
 | |
|          II = I - OFFSET
 | |
| *        All intervals marked by '0' have been refined.
 | |
|          IF( IWORK( K-1 ).EQ.0 ) THEN
 | |
|             W( II ) = HALF*( WORK( K-1 )+WORK( K ) )
 | |
|             WERR( II ) = WORK( K ) - W( II )
 | |
|          END IF
 | |
|  110  CONTINUE
 | |
| *
 | |
|       DO 111 I = IFIRST+1, ILAST
 | |
|          K = 2*I
 | |
|          II = I - OFFSET
 | |
|          WGAP( II-1 ) = MAX( ZERO,
 | |
|      $                     W(II) - WERR (II) - W( II-1 ) - WERR( II-1 ))
 | |
|  111  CONTINUE
 | |
| 
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLARRB
 | |
| *
 | |
|       END
 |