364 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			364 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZLAGGE
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, KL, KU, LDA, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            ISEED( 4 )
 | 
						|
*       DOUBLE PRECISION   D( * )
 | 
						|
*       COMPLEX*16         A( LDA, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZLAGGE generates a complex general m by n matrix A, by pre- and post-
 | 
						|
*> multiplying a real diagonal matrix D with random unitary matrices:
 | 
						|
*> A = U*D*V. The lower and upper bandwidths may then be reduced to
 | 
						|
*> kl and ku by additional unitary transformations.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KL
 | 
						|
*> \verbatim
 | 
						|
*>          KL is INTEGER
 | 
						|
*>          The number of nonzero subdiagonals within the band of A.
 | 
						|
*>          0 <= KL <= M-1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KU
 | 
						|
*> \verbatim
 | 
						|
*>          KU is INTEGER
 | 
						|
*>          The number of nonzero superdiagonals within the band of A.
 | 
						|
*>          0 <= KU <= N-1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (min(M,N))
 | 
						|
*>          The diagonal elements of the diagonal matrix D.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          The generated m by n matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ISEED
 | 
						|
*> \verbatim
 | 
						|
*>          ISEED is INTEGER array, dimension (4)
 | 
						|
*>          On entry, the seed of the random number generator; the array
 | 
						|
*>          elements must be between 0 and 4095, and ISEED(4) must be
 | 
						|
*>          odd.
 | 
						|
*>          On exit, the seed is updated.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (M+N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex16_matgen
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, KL, KU, LDA, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            ISEED( 4 )
 | 
						|
      DOUBLE PRECISION   D( * )
 | 
						|
      COMPLEX*16         A( LDA, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
 | 
						|
     $                   ONE = ( 1.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J
 | 
						|
      DOUBLE PRECISION   WN
 | 
						|
      COMPLEX*16         TAU, WA, WB
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA, ZGEMV, ZGERC, ZLACGV, ZLARNV, ZSCAL
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DZNRM2
 | 
						|
      EXTERNAL           DZNRM2
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      END IF
 | 
						|
      IF( INFO.LT.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZLAGGE', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     initialize A to diagonal matrix
 | 
						|
*
 | 
						|
      DO 20 J = 1, N
 | 
						|
         DO 10 I = 1, M
 | 
						|
            A( I, J ) = ZERO
 | 
						|
   10    CONTINUE
 | 
						|
   20 CONTINUE
 | 
						|
      DO 30 I = 1, MIN( M, N )
 | 
						|
         A( I, I ) = D( I )
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
*     pre- and post-multiply A by random unitary matrices
 | 
						|
*
 | 
						|
      DO 40 I = MIN( M, N ), 1, -1
 | 
						|
         IF( I.LT.M ) THEN
 | 
						|
*
 | 
						|
*           generate random reflection
 | 
						|
*
 | 
						|
            CALL ZLARNV( 3, ISEED, M-I+1, WORK )
 | 
						|
            WN = DZNRM2( M-I+1, WORK, 1 )
 | 
						|
            WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
 | 
						|
            IF( WN.EQ.ZERO ) THEN
 | 
						|
               TAU = ZERO
 | 
						|
            ELSE
 | 
						|
               WB = WORK( 1 ) + WA
 | 
						|
               CALL ZSCAL( M-I, ONE / WB, WORK( 2 ), 1 )
 | 
						|
               WORK( 1 ) = ONE
 | 
						|
               TAU = DBLE( WB / WA )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           multiply A(i:m,i:n) by random reflection from the left
 | 
						|
*
 | 
						|
            CALL ZGEMV( 'Conjugate transpose', M-I+1, N-I+1, ONE,
 | 
						|
     $                  A( I, I ), LDA, WORK, 1, ZERO, WORK( M+1 ), 1 )
 | 
						|
            CALL ZGERC( M-I+1, N-I+1, -TAU, WORK, 1, WORK( M+1 ), 1,
 | 
						|
     $                  A( I, I ), LDA )
 | 
						|
         END IF
 | 
						|
         IF( I.LT.N ) THEN
 | 
						|
*
 | 
						|
*           generate random reflection
 | 
						|
*
 | 
						|
            CALL ZLARNV( 3, ISEED, N-I+1, WORK )
 | 
						|
            WN = DZNRM2( N-I+1, WORK, 1 )
 | 
						|
            WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
 | 
						|
            IF( WN.EQ.ZERO ) THEN
 | 
						|
               TAU = ZERO
 | 
						|
            ELSE
 | 
						|
               WB = WORK( 1 ) + WA
 | 
						|
               CALL ZSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
 | 
						|
               WORK( 1 ) = ONE
 | 
						|
               TAU = DBLE( WB / WA )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           multiply A(i:m,i:n) by random reflection from the right
 | 
						|
*
 | 
						|
            CALL ZGEMV( 'No transpose', M-I+1, N-I+1, ONE, A( I, I ),
 | 
						|
     $                  LDA, WORK, 1, ZERO, WORK( N+1 ), 1 )
 | 
						|
            CALL ZGERC( M-I+1, N-I+1, -TAU, WORK( N+1 ), 1, WORK, 1,
 | 
						|
     $                  A( I, I ), LDA )
 | 
						|
         END IF
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
*     Reduce number of subdiagonals to KL and number of superdiagonals
 | 
						|
*     to KU
 | 
						|
*
 | 
						|
      DO 70 I = 1, MAX( M-1-KL, N-1-KU )
 | 
						|
         IF( KL.LE.KU ) THEN
 | 
						|
*
 | 
						|
*           annihilate subdiagonal elements first (necessary if KL = 0)
 | 
						|
*
 | 
						|
            IF( I.LE.MIN( M-1-KL, N ) ) THEN
 | 
						|
*
 | 
						|
*              generate reflection to annihilate A(kl+i+1:m,i)
 | 
						|
*
 | 
						|
               WN = DZNRM2( M-KL-I+1, A( KL+I, I ), 1 )
 | 
						|
               WA = ( WN / ABS( A( KL+I, I ) ) )*A( KL+I, I )
 | 
						|
               IF( WN.EQ.ZERO ) THEN
 | 
						|
                  TAU = ZERO
 | 
						|
               ELSE
 | 
						|
                  WB = A( KL+I, I ) + WA
 | 
						|
                  CALL ZSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 )
 | 
						|
                  A( KL+I, I ) = ONE
 | 
						|
                  TAU = DBLE( WB / WA )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              apply reflection to A(kl+i:m,i+1:n) from the left
 | 
						|
*
 | 
						|
               CALL ZGEMV( 'Conjugate transpose', M-KL-I+1, N-I, ONE,
 | 
						|
     $                     A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO,
 | 
						|
     $                     WORK, 1 )
 | 
						|
               CALL ZGERC( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK,
 | 
						|
     $                     1, A( KL+I, I+1 ), LDA )
 | 
						|
               A( KL+I, I ) = -WA
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            IF( I.LE.MIN( N-1-KU, M ) ) THEN
 | 
						|
*
 | 
						|
*              generate reflection to annihilate A(i,ku+i+1:n)
 | 
						|
*
 | 
						|
               WN = DZNRM2( N-KU-I+1, A( I, KU+I ), LDA )
 | 
						|
               WA = ( WN / ABS( A( I, KU+I ) ) )*A( I, KU+I )
 | 
						|
               IF( WN.EQ.ZERO ) THEN
 | 
						|
                  TAU = ZERO
 | 
						|
               ELSE
 | 
						|
                  WB = A( I, KU+I ) + WA
 | 
						|
                  CALL ZSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA )
 | 
						|
                  A( I, KU+I ) = ONE
 | 
						|
                  TAU = DBLE( WB / WA )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              apply reflection to A(i+1:m,ku+i:n) from the right
 | 
						|
*
 | 
						|
               CALL ZLACGV( N-KU-I+1, A( I, KU+I ), LDA )
 | 
						|
               CALL ZGEMV( 'No transpose', M-I, N-KU-I+1, ONE,
 | 
						|
     $                     A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO,
 | 
						|
     $                     WORK, 1 )
 | 
						|
               CALL ZGERC( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ),
 | 
						|
     $                     LDA, A( I+1, KU+I ), LDA )
 | 
						|
               A( I, KU+I ) = -WA
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           annihilate superdiagonal elements first (necessary if
 | 
						|
*           KU = 0)
 | 
						|
*
 | 
						|
            IF( I.LE.MIN( N-1-KU, M ) ) THEN
 | 
						|
*
 | 
						|
*              generate reflection to annihilate A(i,ku+i+1:n)
 | 
						|
*
 | 
						|
               WN = DZNRM2( N-KU-I+1, A( I, KU+I ), LDA )
 | 
						|
               WA = ( WN / ABS( A( I, KU+I ) ) )*A( I, KU+I )
 | 
						|
               IF( WN.EQ.ZERO ) THEN
 | 
						|
                  TAU = ZERO
 | 
						|
               ELSE
 | 
						|
                  WB = A( I, KU+I ) + WA
 | 
						|
                  CALL ZSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA )
 | 
						|
                  A( I, KU+I ) = ONE
 | 
						|
                  TAU = DBLE( WB / WA )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              apply reflection to A(i+1:m,ku+i:n) from the right
 | 
						|
*
 | 
						|
               CALL ZLACGV( N-KU-I+1, A( I, KU+I ), LDA )
 | 
						|
               CALL ZGEMV( 'No transpose', M-I, N-KU-I+1, ONE,
 | 
						|
     $                     A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO,
 | 
						|
     $                     WORK, 1 )
 | 
						|
               CALL ZGERC( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ),
 | 
						|
     $                     LDA, A( I+1, KU+I ), LDA )
 | 
						|
               A( I, KU+I ) = -WA
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            IF( I.LE.MIN( M-1-KL, N ) ) THEN
 | 
						|
*
 | 
						|
*              generate reflection to annihilate A(kl+i+1:m,i)
 | 
						|
*
 | 
						|
               WN = DZNRM2( M-KL-I+1, A( KL+I, I ), 1 )
 | 
						|
               WA = ( WN / ABS( A( KL+I, I ) ) )*A( KL+I, I )
 | 
						|
               IF( WN.EQ.ZERO ) THEN
 | 
						|
                  TAU = ZERO
 | 
						|
               ELSE
 | 
						|
                  WB = A( KL+I, I ) + WA
 | 
						|
                  CALL ZSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 )
 | 
						|
                  A( KL+I, I ) = ONE
 | 
						|
                  TAU = DBLE( WB / WA )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              apply reflection to A(kl+i:m,i+1:n) from the left
 | 
						|
*
 | 
						|
               CALL ZGEMV( 'Conjugate transpose', M-KL-I+1, N-I, ONE,
 | 
						|
     $                     A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO,
 | 
						|
     $                     WORK, 1 )
 | 
						|
               CALL ZGERC( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK,
 | 
						|
     $                     1, A( KL+I, I+1 ), LDA )
 | 
						|
               A( KL+I, I ) = -WA
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         DO 50 J = KL + I + 1, M
 | 
						|
            A( J, I ) = ZERO
 | 
						|
   50    CONTINUE
 | 
						|
*
 | 
						|
         DO 60 J = KU + I + 1, N
 | 
						|
            A( I, J ) = ZERO
 | 
						|
   60    CONTINUE
 | 
						|
   70 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZLAGGE
 | 
						|
*
 | 
						|
      END
 |