211 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			211 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SQPT01
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       REAL             FUNCTION SQPT01( M, N, K, A, AF, LDA, TAU, JPVT,
 | 
						|
*                        WORK, LWORK )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            K, LDA, LWORK, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            JPVT( * )
 | 
						|
*       REAL               A( LDA, * ), AF( LDA, * ), TAU( * ),
 | 
						|
*      $                   WORK( LWORK )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SQPT01 tests the QR-factorization with pivoting of a matrix A.  The
 | 
						|
*> array AF contains the (possibly partial) QR-factorization of A, where
 | 
						|
*> the upper triangle of AF(1:k,1:k) is a partial triangular factor,
 | 
						|
*> the entries below the diagonal in the first k columns are the
 | 
						|
*> Householder vectors, and the rest of AF contains a partially updated
 | 
						|
*> matrix.
 | 
						|
*>
 | 
						|
*> This function returns ||A*P - Q*R||/(||norm(A)||*eps*M)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrices A and AF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrices A and AF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>          The number of columns of AF that have been reduced
 | 
						|
*>          to upper triangular form.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA, N)
 | 
						|
*>          The original matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AF
 | 
						|
*> \verbatim
 | 
						|
*>          AF is REAL array, dimension (LDA,N)
 | 
						|
*>          The (possibly partial) output of SGEQPF.  The upper triangle
 | 
						|
*>          of AF(1:k,1:k) is a partial triangular factor, the entries
 | 
						|
*>          below the diagonal in the first k columns are the Householder
 | 
						|
*>          vectors, and the rest of AF contains a partially updated
 | 
						|
*>          matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the arrays A and AF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is REAL array, dimension (K)
 | 
						|
*>          Details of the Householder transformations as returned by
 | 
						|
*>          SGEQPF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] JPVT
 | 
						|
*> \verbatim
 | 
						|
*>          JPVT is INTEGER array, dimension (N)
 | 
						|
*>          Pivot information as returned by SGEQPF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (LWORK)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The length of the array WORK.  LWORK >= M*N+N.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup single_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      REAL             FUNCTION SQPT01( M, N, K, A, AF, LDA, TAU, JPVT,
 | 
						|
     $                 WORK, LWORK )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            K, LDA, LWORK, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            JPVT( * )
 | 
						|
      REAL               A( LDA, * ), AF( LDA, * ), TAU( * ),
 | 
						|
     $                   WORK( LWORK )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, INFO, J
 | 
						|
      REAL               NORMA
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      REAL               RWORK( 1 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH, SLANGE
 | 
						|
      EXTERNAL           SLAMCH, SLANGE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SAXPY, SCOPY, SORMQR, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      SQPT01 = ZERO
 | 
						|
*
 | 
						|
*     Test if there is enough workspace
 | 
						|
*
 | 
						|
      IF( LWORK.LT.M*N+N ) THEN
 | 
						|
         CALL XERBLA( 'SQPT01', 10 )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.LE.0 .OR. N.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      NORMA = SLANGE( 'One-norm', M, N, A, LDA, RWORK )
 | 
						|
*
 | 
						|
      DO 30 J = 1, K
 | 
						|
         DO 10 I = 1, MIN( J, M )
 | 
						|
            WORK( ( J-1 )*M+I ) = AF( I, J )
 | 
						|
   10    CONTINUE
 | 
						|
         DO 20 I = J + 1, M
 | 
						|
            WORK( ( J-1 )*M+I ) = ZERO
 | 
						|
   20    CONTINUE
 | 
						|
   30 CONTINUE
 | 
						|
      DO 40 J = K + 1, N
 | 
						|
         CALL SCOPY( M, AF( 1, J ), 1, WORK( ( J-1 )*M+1 ), 1 )
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
      CALL SORMQR( 'Left', 'No transpose', M, N, K, AF, LDA, TAU, WORK,
 | 
						|
     $             M, WORK( M*N+1 ), LWORK-M*N, INFO )
 | 
						|
*
 | 
						|
      DO 50 J = 1, N
 | 
						|
*
 | 
						|
*        Compare i-th column of QR and jpvt(i)-th column of A
 | 
						|
*
 | 
						|
         CALL SAXPY( M, -ONE, A( 1, JPVT( J ) ), 1, WORK( ( J-1 )*M+1 ),
 | 
						|
     $               1 )
 | 
						|
   50 CONTINUE
 | 
						|
*
 | 
						|
      SQPT01 = SLANGE( 'One-norm', M, N, WORK, M, RWORK ) /
 | 
						|
     $         ( REAL( MAX( M, N ) )*SLAMCH( 'Epsilon' ) )
 | 
						|
      IF( NORMA.NE.ZERO )
 | 
						|
     $   SQPT01 = SQPT01 / NORMA
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SQPT01
 | 
						|
*
 | 
						|
      END
 |