240 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			240 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CHET01_ROOK
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CHET01_ROOK( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
 | 
						|
*                               RWORK, RESID )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            LDA, LDAFAC, LDC, N
 | 
						|
*       REAL               RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       REAL               RWORK( * )
 | 
						|
*       COMPLEX            A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CHET01_ROOK reconstructs a complex Hermitian indefinite matrix A from its
 | 
						|
*> block L*D*L' or U*D*U' factorization and computes the residual
 | 
						|
*>    norm( C - A ) / ( N * norm(A) * EPS ),
 | 
						|
*> where C is the reconstructed matrix, EPS is the machine epsilon,
 | 
						|
*> L' is the transpose of L, and U' is the transpose of U.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          complex Hermitian matrix A is stored:
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of rows and columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          The original complex Hermitian matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AFAC
 | 
						|
*> \verbatim
 | 
						|
*>          AFAC is COMPLEX array, dimension (LDAFAC,N)
 | 
						|
*>          The factored form of the matrix A.  AFAC contains the block
 | 
						|
*>          diagonal matrix D and the multipliers used to obtain the
 | 
						|
*>          factor L or U from the block L*D*L' or U*D*U' factorization
 | 
						|
*>          as computed by CSYTRF_ROOK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAFAC
 | 
						|
*> \verbatim
 | 
						|
*>          LDAFAC is INTEGER
 | 
						|
*>          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          The pivot indices from CSYTRF_ROOK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is COMPLEX array, dimension (LDC,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>          The leading dimension of the array C.  LDC >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is REAL
 | 
						|
*>          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
 | 
						|
*>          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date November 2013
 | 
						|
*
 | 
						|
*> \ingroup complex_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CHET01_ROOK( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C,
 | 
						|
     $                        LDC, RWORK, RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.5.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2013
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            LDA, LDAFAC, LDC, N
 | 
						|
      REAL               RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      REAL               RWORK( * )
 | 
						|
      COMPLEX            A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
      COMPLEX            CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
 | 
						|
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, INFO, J
 | 
						|
      REAL               ANORM, EPS
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               CLANHE, SLAMCH
 | 
						|
      EXTERNAL           LSAME, CLANHE, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CLASET, CLAVHE_ROOK
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          AIMAG, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if N = 0.
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Determine EPS and the norm of A.
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'Epsilon' )
 | 
						|
      ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
 | 
						|
*
 | 
						|
*     Check the imaginary parts of the diagonal elements and return with
 | 
						|
*     an error code if any are nonzero.
 | 
						|
*
 | 
						|
      DO 10 J = 1, N
 | 
						|
         IF( AIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
 | 
						|
            RESID = ONE / EPS
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
*     Initialize C to the identity matrix.
 | 
						|
*
 | 
						|
      CALL CLASET( 'Full', N, N, CZERO, CONE, C, LDC )
 | 
						|
*
 | 
						|
*     Call CLAVHE_ROOK to form the product D * U' (or D * L' ).
 | 
						|
*
 | 
						|
      CALL CLAVHE_ROOK( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC,
 | 
						|
     $                  LDAFAC, IPIV, C, LDC, INFO )
 | 
						|
*
 | 
						|
*     Call CLAVHE_ROOK again to multiply by U (or L ).
 | 
						|
*
 | 
						|
      CALL CLAVHE_ROOK( UPLO, 'No transpose', 'Unit', N, N, AFAC,
 | 
						|
     $                  LDAFAC, IPIV, C, LDC, INFO )
 | 
						|
*
 | 
						|
*     Compute the difference  C - A .
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         DO 30 J = 1, N
 | 
						|
            DO 20 I = 1, J - 1
 | 
						|
               C( I, J ) = C( I, J ) - A( I, J )
 | 
						|
   20       CONTINUE
 | 
						|
            C( J, J ) = C( J, J ) - REAL( A( J, J ) )
 | 
						|
   30    CONTINUE
 | 
						|
      ELSE
 | 
						|
         DO 50 J = 1, N
 | 
						|
            C( J, J ) = C( J, J ) - REAL( A( J, J ) )
 | 
						|
            DO 40 I = J + 1, N
 | 
						|
               C( I, J ) = C( I, J ) - A( I, J )
 | 
						|
   40       CONTINUE
 | 
						|
   50    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute norm( C - A ) / ( N * norm(A) * EPS )
 | 
						|
*
 | 
						|
      RESID = CLANHE( '1', UPLO, N, C, LDC, RWORK )
 | 
						|
*
 | 
						|
      IF( ANORM.LE.ZERO ) THEN
 | 
						|
         IF( RESID.NE.ZERO )
 | 
						|
     $      RESID = ONE / EPS
 | 
						|
      ELSE
 | 
						|
         RESID = ( ( RESID/REAL( N ) )/ANORM ) / EPS
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CHET01_ROOK
 | 
						|
*
 | 
						|
      END
 |