170 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			170 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZLAR2V applies a vector of plane rotations with real cosines and complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZLAR2V + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlar2v.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlar2v.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlar2v.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZLAR2V( N, X, Y, Z, INCX, C, S, INCC )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INCC, INCX, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   C( * )
 | 
						|
*       COMPLEX*16         S( * ), X( * ), Y( * ), Z( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZLAR2V applies a vector of complex plane rotations with real cosines
 | 
						|
*> from both sides to a sequence of 2-by-2 complex Hermitian matrices,
 | 
						|
*> defined by the elements of the vectors x, y and z. For i = 1,2,...,n
 | 
						|
*>
 | 
						|
*>    (       x(i)  z(i) ) :=
 | 
						|
*>    ( conjg(z(i)) y(i) )
 | 
						|
*>
 | 
						|
*>      (  c(i) conjg(s(i)) ) (       x(i)  z(i) ) ( c(i) -conjg(s(i)) )
 | 
						|
*>      ( -s(i)       c(i)  ) ( conjg(z(i)) y(i) ) ( s(i)        c(i)  )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of plane rotations to be applied.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX*16 array, dimension (1+(N-1)*INCX)
 | 
						|
*>          The vector x; the elements of x are assumed to be real.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Y
 | 
						|
*> \verbatim
 | 
						|
*>          Y is COMPLEX*16 array, dimension (1+(N-1)*INCX)
 | 
						|
*>          The vector y; the elements of y are assumed to be real.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is COMPLEX*16 array, dimension (1+(N-1)*INCX)
 | 
						|
*>          The vector z.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCX
 | 
						|
*> \verbatim
 | 
						|
*>          INCX is INTEGER
 | 
						|
*>          The increment between elements of X, Y and Z. INCX > 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
 | 
						|
*>          The cosines of the plane rotations.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is COMPLEX*16 array, dimension (1+(N-1)*INCC)
 | 
						|
*>          The sines of the plane rotations.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCC
 | 
						|
*> \verbatim
 | 
						|
*>          INCC is INTEGER
 | 
						|
*>          The increment between elements of C and S. INCC > 0.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup complex16OTHERauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZLAR2V( N, X, Y, Z, INCX, C, S, INCC )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INCC, INCX, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   C( * )
 | 
						|
      COMPLEX*16         S( * ), X( * ), Y( * ), Z( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, IC, IX
 | 
						|
      DOUBLE PRECISION   CI, SII, SIR, T1I, T1R, T5, T6, XI, YI, ZII,
 | 
						|
     $                   ZIR
 | 
						|
      COMPLEX*16         SI, T2, T3, T4, ZI
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, DCMPLX, DCONJG, DIMAG
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      IX = 1
 | 
						|
      IC = 1
 | 
						|
      DO 10 I = 1, N
 | 
						|
         XI = DBLE( X( IX ) )
 | 
						|
         YI = DBLE( Y( IX ) )
 | 
						|
         ZI = Z( IX )
 | 
						|
         ZIR = DBLE( ZI )
 | 
						|
         ZII = DIMAG( ZI )
 | 
						|
         CI = C( IC )
 | 
						|
         SI = S( IC )
 | 
						|
         SIR = DBLE( SI )
 | 
						|
         SII = DIMAG( SI )
 | 
						|
         T1R = SIR*ZIR - SII*ZII
 | 
						|
         T1I = SIR*ZII + SII*ZIR
 | 
						|
         T2 = CI*ZI
 | 
						|
         T3 = T2 - DCONJG( SI )*XI
 | 
						|
         T4 = DCONJG( T2 ) + SI*YI
 | 
						|
         T5 = CI*XI + T1R
 | 
						|
         T6 = CI*YI - T1R
 | 
						|
         X( IX ) = CI*T5 + ( SIR*DBLE( T4 )+SII*DIMAG( T4 ) )
 | 
						|
         Y( IX ) = CI*T6 - ( SIR*DBLE( T3 )-SII*DIMAG( T3 ) )
 | 
						|
         Z( IX ) = CI*T3 + DCONJG( SI )*DCMPLX( T6, T1I )
 | 
						|
         IX = IX + INCX
 | 
						|
         IC = IC + INCC
 | 
						|
   10 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZLAR2V
 | 
						|
*
 | 
						|
      END
 |