354 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			354 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLANTR + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlantr.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlantr.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlantr.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       DOUBLE PRECISION FUNCTION DLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
 | 
						|
*                        WORK )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          DIAG, NORM, UPLO
 | 
						|
*       INTEGER            LDA, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DLANTR  returns the value of the one norm,  or the Frobenius norm, or
 | 
						|
*> the  infinity norm,  or the  element of  largest absolute value  of a
 | 
						|
*> trapezoidal or triangular matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \return DLANTR
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>    DLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 | 
						|
*>             (
 | 
						|
*>             ( norm1(A),         NORM = '1', 'O' or 'o'
 | 
						|
*>             (
 | 
						|
*>             ( normI(A),         NORM = 'I' or 'i'
 | 
						|
*>             (
 | 
						|
*>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 | 
						|
*>
 | 
						|
*> where  norm1  denotes the  one norm of a matrix (maximum column sum),
 | 
						|
*> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 | 
						|
*> normF  denotes the  Frobenius norm of a matrix (square root of sum of
 | 
						|
*> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] NORM
 | 
						|
*> \verbatim
 | 
						|
*>          NORM is CHARACTER*1
 | 
						|
*>          Specifies the value to be returned in DLANTR as described
 | 
						|
*>          above.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the matrix A is upper or lower trapezoidal.
 | 
						|
*>          = 'U':  Upper trapezoidal
 | 
						|
*>          = 'L':  Lower trapezoidal
 | 
						|
*>          Note that A is triangular instead of trapezoidal if M = N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIAG
 | 
						|
*> \verbatim
 | 
						|
*>          DIAG is CHARACTER*1
 | 
						|
*>          Specifies whether or not the matrix A has unit diagonal.
 | 
						|
*>          = 'N':  Non-unit diagonal
 | 
						|
*>          = 'U':  Unit diagonal
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0, and if
 | 
						|
*>          UPLO = 'U', M <= N.  When M = 0, DLANTR is set to zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0, and if
 | 
						|
*>          UPLO = 'L', N <= M.  When N = 0, DLANTR is set to zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>          The trapezoidal matrix A (A is triangular if M = N).
 | 
						|
*>          If UPLO = 'U', the leading m by n upper trapezoidal part of
 | 
						|
*>          the array A contains the upper trapezoidal matrix, and the
 | 
						|
*>          strictly lower triangular part of A is not referenced.
 | 
						|
*>          If UPLO = 'L', the leading m by n lower trapezoidal part of
 | 
						|
*>          the array A contains the lower trapezoidal matrix, and the
 | 
						|
*>          strictly upper triangular part of A is not referenced.  Note
 | 
						|
*>          that when DIAG = 'U', the diagonal elements of A are not
 | 
						|
*>          referenced and are assumed to be one.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(M,1).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 | 
						|
*>          where LWORK >= M when NORM = 'I'; otherwise, WORK is not
 | 
						|
*>          referenced.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      DOUBLE PRECISION FUNCTION DLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
 | 
						|
     $                 WORK )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          DIAG, NORM, UPLO
 | 
						|
      INTEGER            LDA, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UDIAG
 | 
						|
      INTEGER            I, J
 | 
						|
      DOUBLE PRECISION   SCALE, SUM, VALUE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DLASSQ
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME, DISNAN
 | 
						|
      EXTERNAL           LSAME, DISNAN
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      IF( MIN( M, N ).EQ.0 ) THEN
 | 
						|
         VALUE = ZERO
 | 
						|
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
 | 
						|
*
 | 
						|
*        Find max(abs(A(i,j))).
 | 
						|
*
 | 
						|
         IF( LSAME( DIAG, 'U' ) ) THEN
 | 
						|
            VALUE = ONE
 | 
						|
            IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
               DO 20 J = 1, N
 | 
						|
                  DO 10 I = 1, MIN( M, J-1 )
 | 
						|
                     SUM = ABS( A( I, J ) )
 | 
						|
                     IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
   10             CONTINUE
 | 
						|
   20          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 40 J = 1, N
 | 
						|
                  DO 30 I = J + 1, M
 | 
						|
                     SUM = ABS( A( I, J ) )
 | 
						|
                     IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
   30             CONTINUE
 | 
						|
   40          CONTINUE
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            VALUE = ZERO
 | 
						|
            IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
               DO 60 J = 1, N
 | 
						|
                  DO 50 I = 1, MIN( M, J )
 | 
						|
                     SUM = ABS( A( I, J ) )
 | 
						|
                     IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
   50             CONTINUE
 | 
						|
   60          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 80 J = 1, N
 | 
						|
                  DO 70 I = J, M
 | 
						|
                     SUM = ABS( A( I, J ) )
 | 
						|
                     IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
   70             CONTINUE
 | 
						|
   80          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
 | 
						|
*
 | 
						|
*        Find norm1(A).
 | 
						|
*
 | 
						|
         VALUE = ZERO
 | 
						|
         UDIAG = LSAME( DIAG, 'U' )
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
            DO 110 J = 1, N
 | 
						|
               IF( ( UDIAG ) .AND. ( J.LE.M ) ) THEN
 | 
						|
                  SUM = ONE
 | 
						|
                  DO 90 I = 1, J - 1
 | 
						|
                     SUM = SUM + ABS( A( I, J ) )
 | 
						|
   90             CONTINUE
 | 
						|
               ELSE
 | 
						|
                  SUM = ZERO
 | 
						|
                  DO 100 I = 1, MIN( M, J )
 | 
						|
                     SUM = SUM + ABS( A( I, J ) )
 | 
						|
  100             CONTINUE
 | 
						|
               END IF
 | 
						|
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
  110       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 140 J = 1, N
 | 
						|
               IF( UDIAG ) THEN
 | 
						|
                  SUM = ONE
 | 
						|
                  DO 120 I = J + 1, M
 | 
						|
                     SUM = SUM + ABS( A( I, J ) )
 | 
						|
  120             CONTINUE
 | 
						|
               ELSE
 | 
						|
                  SUM = ZERO
 | 
						|
                  DO 130 I = J, M
 | 
						|
                     SUM = SUM + ABS( A( I, J ) )
 | 
						|
  130             CONTINUE
 | 
						|
               END IF
 | 
						|
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
  140       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE IF( LSAME( NORM, 'I' ) ) THEN
 | 
						|
*
 | 
						|
*        Find normI(A).
 | 
						|
*
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
            IF( LSAME( DIAG, 'U' ) ) THEN
 | 
						|
               DO 150 I = 1, M
 | 
						|
                  WORK( I ) = ONE
 | 
						|
  150          CONTINUE
 | 
						|
               DO 170 J = 1, N
 | 
						|
                  DO 160 I = 1, MIN( M, J-1 )
 | 
						|
                     WORK( I ) = WORK( I ) + ABS( A( I, J ) )
 | 
						|
  160             CONTINUE
 | 
						|
  170          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 180 I = 1, M
 | 
						|
                  WORK( I ) = ZERO
 | 
						|
  180          CONTINUE
 | 
						|
               DO 200 J = 1, N
 | 
						|
                  DO 190 I = 1, MIN( M, J )
 | 
						|
                     WORK( I ) = WORK( I ) + ABS( A( I, J ) )
 | 
						|
  190             CONTINUE
 | 
						|
  200          CONTINUE
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            IF( LSAME( DIAG, 'U' ) ) THEN
 | 
						|
               DO 210 I = 1, N
 | 
						|
                  WORK( I ) = ONE
 | 
						|
  210          CONTINUE
 | 
						|
               DO 220 I = N + 1, M
 | 
						|
                  WORK( I ) = ZERO
 | 
						|
  220          CONTINUE
 | 
						|
               DO 240 J = 1, N
 | 
						|
                  DO 230 I = J + 1, M
 | 
						|
                     WORK( I ) = WORK( I ) + ABS( A( I, J ) )
 | 
						|
  230             CONTINUE
 | 
						|
  240          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 250 I = 1, M
 | 
						|
                  WORK( I ) = ZERO
 | 
						|
  250          CONTINUE
 | 
						|
               DO 270 J = 1, N
 | 
						|
                  DO 260 I = J, M
 | 
						|
                     WORK( I ) = WORK( I ) + ABS( A( I, J ) )
 | 
						|
  260             CONTINUE
 | 
						|
  270          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         VALUE = ZERO
 | 
						|
         DO 280 I = 1, M
 | 
						|
            SUM = WORK( I )
 | 
						|
            IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
  280    CONTINUE
 | 
						|
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
 | 
						|
*
 | 
						|
*        Find normF(A).
 | 
						|
*
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
            IF( LSAME( DIAG, 'U' ) ) THEN
 | 
						|
               SCALE = ONE
 | 
						|
               SUM = MIN( M, N )
 | 
						|
               DO 290 J = 2, N
 | 
						|
                  CALL DLASSQ( MIN( M, J-1 ), A( 1, J ), 1, SCALE, SUM )
 | 
						|
  290          CONTINUE
 | 
						|
            ELSE
 | 
						|
               SCALE = ZERO
 | 
						|
               SUM = ONE
 | 
						|
               DO 300 J = 1, N
 | 
						|
                  CALL DLASSQ( MIN( M, J ), A( 1, J ), 1, SCALE, SUM )
 | 
						|
  300          CONTINUE
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            IF( LSAME( DIAG, 'U' ) ) THEN
 | 
						|
               SCALE = ONE
 | 
						|
               SUM = MIN( M, N )
 | 
						|
               DO 310 J = 1, N
 | 
						|
                  CALL DLASSQ( M-J, A( MIN( M, J+1 ), J ), 1, SCALE,
 | 
						|
     $                         SUM )
 | 
						|
  310          CONTINUE
 | 
						|
            ELSE
 | 
						|
               SCALE = ZERO
 | 
						|
               SUM = ONE
 | 
						|
               DO 320 J = 1, N
 | 
						|
                  CALL DLASSQ( M-J+1, A( J, J ), 1, SCALE, SUM )
 | 
						|
  320          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         VALUE = SCALE*SQRT( SUM )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      DLANTR = VALUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DLANTR
 | 
						|
*
 | 
						|
      END
 |