981 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			981 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DDRVEV
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DDRVEV( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | 
						|
*                          NOUNIT, A, LDA, H, WR, WI, WR1, WI1, VL, LDVL,
 | 
						|
*                          VR, LDVR, LRE, LDLRE, RESULT, WORK, NWORK,
 | 
						|
*                          IWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, LDLRE, LDVL, LDVR, NOUNIT, NSIZES,
 | 
						|
*      $                   NTYPES, NWORK
 | 
						|
*       DOUBLE PRECISION   THRESH
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            DOTYPE( * )
 | 
						|
*       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
 | 
						|
*      $                   RESULT( 7 ), VL( LDVL, * ), VR( LDVR, * ),
 | 
						|
*      $                   WI( * ), WI1( * ), WORK( * ), WR( * ), WR1( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>    DDRVEV  checks the nonsymmetric eigenvalue problem driver DGEEV.
 | 
						|
*>
 | 
						|
*>    When DDRVEV is called, a number of matrix "sizes" ("n's") and a
 | 
						|
*>    number of matrix "types" are specified.  For each size ("n")
 | 
						|
*>    and each type of matrix, one matrix will be generated and used
 | 
						|
*>    to test the nonsymmetric eigenroutines.  For each matrix, 7
 | 
						|
*>    tests will be performed:
 | 
						|
*>
 | 
						|
*>    (1)     | A * VR - VR * W | / ( n |A| ulp )
 | 
						|
*>
 | 
						|
*>      Here VR is the matrix of unit right eigenvectors.
 | 
						|
*>      W is a block diagonal matrix, with a 1x1 block for each
 | 
						|
*>      real eigenvalue and a 2x2 block for each complex conjugate
 | 
						|
*>      pair.  If eigenvalues j and j+1 are a complex conjugate pair,
 | 
						|
*>      so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the
 | 
						|
*>      2 x 2 block corresponding to the pair will be:
 | 
						|
*>
 | 
						|
*>              (  wr  wi  )
 | 
						|
*>              ( -wi  wr  )
 | 
						|
*>
 | 
						|
*>      Such a block multiplying an n x 2 matrix  ( ur ui ) on the
 | 
						|
*>      right will be the same as multiplying  ur + i*ui  by  wr + i*wi.
 | 
						|
*>
 | 
						|
*>    (2)     | A**H * VL - VL * W**H | / ( n |A| ulp )
 | 
						|
*>
 | 
						|
*>      Here VL is the matrix of unit left eigenvectors, A**H is the
 | 
						|
*>      conjugate transpose of A, and W is as above.
 | 
						|
*>
 | 
						|
*>    (3)     | |VR(i)| - 1 | / ulp and whether largest component real
 | 
						|
*>
 | 
						|
*>      VR(i) denotes the i-th column of VR.
 | 
						|
*>
 | 
						|
*>    (4)     | |VL(i)| - 1 | / ulp and whether largest component real
 | 
						|
*>
 | 
						|
*>      VL(i) denotes the i-th column of VL.
 | 
						|
*>
 | 
						|
*>    (5)     W(full) = W(partial)
 | 
						|
*>
 | 
						|
*>      W(full) denotes the eigenvalues computed when both VR and VL
 | 
						|
*>      are also computed, and W(partial) denotes the eigenvalues
 | 
						|
*>      computed when only W, only W and VR, or only W and VL are
 | 
						|
*>      computed.
 | 
						|
*>
 | 
						|
*>    (6)     VR(full) = VR(partial)
 | 
						|
*>
 | 
						|
*>      VR(full) denotes the right eigenvectors computed when both VR
 | 
						|
*>      and VL are computed, and VR(partial) denotes the result
 | 
						|
*>      when only VR is computed.
 | 
						|
*>
 | 
						|
*>     (7)     VL(full) = VL(partial)
 | 
						|
*>
 | 
						|
*>      VL(full) denotes the left eigenvectors computed when both VR
 | 
						|
*>      and VL are also computed, and VL(partial) denotes the result
 | 
						|
*>      when only VL is computed.
 | 
						|
*>
 | 
						|
*>    The "sizes" are specified by an array NN(1:NSIZES); the value of
 | 
						|
*>    each element NN(j) specifies one size.
 | 
						|
*>    The "types" are specified by a logical array DOTYPE( 1:NTYPES );
 | 
						|
*>    if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
 | 
						|
*>    Currently, the list of possible types is:
 | 
						|
*>
 | 
						|
*>    (1)  The zero matrix.
 | 
						|
*>    (2)  The identity matrix.
 | 
						|
*>    (3)  A (transposed) Jordan block, with 1's on the diagonal.
 | 
						|
*>
 | 
						|
*>    (4)  A diagonal matrix with evenly spaced entries
 | 
						|
*>         1, ..., ULP  and random signs.
 | 
						|
*>         (ULP = (first number larger than 1) - 1 )
 | 
						|
*>    (5)  A diagonal matrix with geometrically spaced entries
 | 
						|
*>         1, ..., ULP  and random signs.
 | 
						|
*>    (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
 | 
						|
*>         and random signs.
 | 
						|
*>
 | 
						|
*>    (7)  Same as (4), but multiplied by a constant near
 | 
						|
*>         the overflow threshold
 | 
						|
*>    (8)  Same as (4), but multiplied by a constant near
 | 
						|
*>         the underflow threshold
 | 
						|
*>
 | 
						|
*>    (9)  A matrix of the form  U' T U, where U is orthogonal and
 | 
						|
*>         T has evenly spaced entries 1, ..., ULP with random signs
 | 
						|
*>         on the diagonal and random O(1) entries in the upper
 | 
						|
*>         triangle.
 | 
						|
*>
 | 
						|
*>    (10) A matrix of the form  U' T U, where U is orthogonal and
 | 
						|
*>         T has geometrically spaced entries 1, ..., ULP with random
 | 
						|
*>         signs on the diagonal and random O(1) entries in the upper
 | 
						|
*>         triangle.
 | 
						|
*>
 | 
						|
*>    (11) A matrix of the form  U' T U, where U is orthogonal and
 | 
						|
*>         T has "clustered" entries 1, ULP,..., ULP with random
 | 
						|
*>         signs on the diagonal and random O(1) entries in the upper
 | 
						|
*>         triangle.
 | 
						|
*>
 | 
						|
*>    (12) A matrix of the form  U' T U, where U is orthogonal and
 | 
						|
*>         T has real or complex conjugate paired eigenvalues randomly
 | 
						|
*>         chosen from ( ULP, 1 ) and random O(1) entries in the upper
 | 
						|
*>         triangle.
 | 
						|
*>
 | 
						|
*>    (13) A matrix of the form  X' T X, where X has condition
 | 
						|
*>         SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
 | 
						|
*>         with random signs on the diagonal and random O(1) entries
 | 
						|
*>         in the upper triangle.
 | 
						|
*>
 | 
						|
*>    (14) A matrix of the form  X' T X, where X has condition
 | 
						|
*>         SQRT( ULP ) and T has geometrically spaced entries
 | 
						|
*>         1, ..., ULP with random signs on the diagonal and random
 | 
						|
*>         O(1) entries in the upper triangle.
 | 
						|
*>
 | 
						|
*>    (15) A matrix of the form  X' T X, where X has condition
 | 
						|
*>         SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
 | 
						|
*>         with random signs on the diagonal and random O(1) entries
 | 
						|
*>         in the upper triangle.
 | 
						|
*>
 | 
						|
*>    (16) A matrix of the form  X' T X, where X has condition
 | 
						|
*>         SQRT( ULP ) and T has real or complex conjugate paired
 | 
						|
*>         eigenvalues randomly chosen from ( ULP, 1 ) and random
 | 
						|
*>         O(1) entries in the upper triangle.
 | 
						|
*>
 | 
						|
*>    (17) Same as (16), but multiplied by a constant
 | 
						|
*>         near the overflow threshold
 | 
						|
*>    (18) Same as (16), but multiplied by a constant
 | 
						|
*>         near the underflow threshold
 | 
						|
*>
 | 
						|
*>    (19) Nonsymmetric matrix with random entries chosen from (-1,1).
 | 
						|
*>         If N is at least 4, all entries in first two rows and last
 | 
						|
*>         row, and first column and last two columns are zero.
 | 
						|
*>    (20) Same as (19), but multiplied by a constant
 | 
						|
*>         near the overflow threshold
 | 
						|
*>    (21) Same as (19), but multiplied by a constant
 | 
						|
*>         near the underflow threshold
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] NSIZES
 | 
						|
*> \verbatim
 | 
						|
*>          NSIZES is INTEGER
 | 
						|
*>          The number of sizes of matrices to use.  If it is zero,
 | 
						|
*>          DDRVEV does nothing.  It must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NN
 | 
						|
*> \verbatim
 | 
						|
*>          NN is INTEGER array, dimension (NSIZES)
 | 
						|
*>          An array containing the sizes to be used for the matrices.
 | 
						|
*>          Zero values will be skipped.  The values must be at least
 | 
						|
*>          zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NTYPES
 | 
						|
*> \verbatim
 | 
						|
*>          NTYPES is INTEGER
 | 
						|
*>          The number of elements in DOTYPE.   If it is zero, DDRVEV
 | 
						|
*>          does nothing.  It must be at least zero.  If it is MAXTYP+1
 | 
						|
*>          and NSIZES is 1, then an additional type, MAXTYP+1 is
 | 
						|
*>          defined, which is to use whatever matrix is in A.  This
 | 
						|
*>          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
 | 
						|
*>          DOTYPE(MAXTYP+1) is .TRUE. .
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DOTYPE
 | 
						|
*> \verbatim
 | 
						|
*>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | 
						|
*>          If DOTYPE(j) is .TRUE., then for each size in NN a
 | 
						|
*>          matrix of that size and of type j will be generated.
 | 
						|
*>          If NTYPES is smaller than the maximum number of types
 | 
						|
*>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
 | 
						|
*>          MAXTYP will not be generated.  If NTYPES is larger
 | 
						|
*>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
 | 
						|
*>          will be ignored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ISEED
 | 
						|
*> \verbatim
 | 
						|
*>          ISEED is INTEGER array, dimension (4)
 | 
						|
*>          On entry ISEED specifies the seed of the random number
 | 
						|
*>          generator. The array elements should be between 0 and 4095;
 | 
						|
*>          if not they will be reduced mod 4096.  Also, ISEED(4) must
 | 
						|
*>          be odd.  The random number generator uses a linear
 | 
						|
*>          congruential sequence limited to small integers, and so
 | 
						|
*>          should produce machine independent random numbers. The
 | 
						|
*>          values of ISEED are changed on exit, and can be used in the
 | 
						|
*>          next call to DDRVEV to continue the same random number
 | 
						|
*>          sequence.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] THRESH
 | 
						|
*> \verbatim
 | 
						|
*>          THRESH is DOUBLE PRECISION
 | 
						|
*>          A test will count as "failed" if the "error", computed as
 | 
						|
*>          described above, exceeds THRESH.  Note that the error
 | 
						|
*>          is scaled to be O(1), so THRESH should be a reasonably
 | 
						|
*>          small multiple of 1, e.g., 10 or 100.  In particular,
 | 
						|
*>          it should not depend on the precision (single vs. double)
 | 
						|
*>          or the size of the matrix.  It must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NOUNIT
 | 
						|
*> \verbatim
 | 
						|
*>          NOUNIT is INTEGER
 | 
						|
*>          The FORTRAN unit number for printing out error messages
 | 
						|
*>          (e.g., if a routine returns INFO not equal to 0.)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA, max(NN))
 | 
						|
*>          Used to hold the matrix whose eigenvalues are to be
 | 
						|
*>          computed.  On exit, A contains the last matrix actually used.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of A, and H. LDA must be at
 | 
						|
*>          least 1 and at least max(NN).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] H
 | 
						|
*> \verbatim
 | 
						|
*>          H is DOUBLE PRECISION array, dimension (LDA, max(NN))
 | 
						|
*>          Another copy of the test matrix A, modified by DGEEV.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WR
 | 
						|
*> \verbatim
 | 
						|
*>          WR is DOUBLE PRECISION array, dimension (max(NN))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WI
 | 
						|
*> \verbatim
 | 
						|
*>          WI is DOUBLE PRECISION array, dimension (max(NN))
 | 
						|
*>
 | 
						|
*>          The real and imaginary parts of the eigenvalues of A.
 | 
						|
*>          On exit, WR + WI*i are the eigenvalues of the matrix in A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WR1
 | 
						|
*> \verbatim
 | 
						|
*>          WR1 is DOUBLE PRECISION array, dimension (max(NN))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WI1
 | 
						|
*> \verbatim
 | 
						|
*>          WI1 is DOUBLE PRECISION array, dimension (max(NN))
 | 
						|
*>
 | 
						|
*>          Like WR, WI, these arrays contain the eigenvalues of A,
 | 
						|
*>          but those computed when DGEEV only computes a partial
 | 
						|
*>          eigendecomposition, i.e. not the eigenvalues and left
 | 
						|
*>          and right eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VL
 | 
						|
*> \verbatim
 | 
						|
*>          VL is DOUBLE PRECISION array, dimension (LDVL, max(NN))
 | 
						|
*>          VL holds the computed left eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVL
 | 
						|
*> \verbatim
 | 
						|
*>          LDVL is INTEGER
 | 
						|
*>          Leading dimension of VL. Must be at least max(1,max(NN)).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VR
 | 
						|
*> \verbatim
 | 
						|
*>          VR is DOUBLE PRECISION array, dimension (LDVR, max(NN))
 | 
						|
*>          VR holds the computed right eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVR
 | 
						|
*> \verbatim
 | 
						|
*>          LDVR is INTEGER
 | 
						|
*>          Leading dimension of VR. Must be at least max(1,max(NN)).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] LRE
 | 
						|
*> \verbatim
 | 
						|
*>          LRE is DOUBLE PRECISION array, dimension (LDLRE,max(NN))
 | 
						|
*>          LRE holds the computed right or left eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDLRE
 | 
						|
*> \verbatim
 | 
						|
*>          LDLRE is INTEGER
 | 
						|
*>          Leading dimension of LRE. Must be at least max(1,max(NN)).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is DOUBLE PRECISION array, dimension (7)
 | 
						|
*>          The values computed by the seven tests described above.
 | 
						|
*>          The values are currently limited to 1/ulp, to avoid overflow.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (NWORK)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NWORK
 | 
						|
*> \verbatim
 | 
						|
*>          NWORK is INTEGER
 | 
						|
*>          The number of entries in WORK.  This must be at least
 | 
						|
*>          5*NN(j)+2*NN(j)**2 for all j.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (max(NN))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          If 0, then everything ran OK.
 | 
						|
*>           -1: NSIZES < 0
 | 
						|
*>           -2: Some NN(j) < 0
 | 
						|
*>           -3: NTYPES < 0
 | 
						|
*>           -6: THRESH < 0
 | 
						|
*>           -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
 | 
						|
*>          -16: LDVL < 1 or LDVL < NMAX, where NMAX is max( NN(j) ).
 | 
						|
*>          -18: LDVR < 1 or LDVR < NMAX, where NMAX is max( NN(j) ).
 | 
						|
*>          -20: LDLRE < 1 or LDLRE < NMAX, where NMAX is max( NN(j) ).
 | 
						|
*>          -23: NWORK too small.
 | 
						|
*>          If  DLATMR, SLATMS, SLATME or DGEEV returns an error code,
 | 
						|
*>              the absolute value of it is returned.
 | 
						|
*>
 | 
						|
*>-----------------------------------------------------------------------
 | 
						|
*>
 | 
						|
*>     Some Local Variables and Parameters:
 | 
						|
*>     ---- ----- --------- --- ----------
 | 
						|
*>
 | 
						|
*>     ZERO, ONE       Real 0 and 1.
 | 
						|
*>     MAXTYP          The number of types defined.
 | 
						|
*>     NMAX            Largest value in NN.
 | 
						|
*>     NERRS           The number of tests which have exceeded THRESH
 | 
						|
*>     COND, CONDS,
 | 
						|
*>     IMODE           Values to be passed to the matrix generators.
 | 
						|
*>     ANORM           Norm of A; passed to matrix generators.
 | 
						|
*>
 | 
						|
*>     OVFL, UNFL      Overflow and underflow thresholds.
 | 
						|
*>     ULP, ULPINV     Finest relative precision and its inverse.
 | 
						|
*>     RTULP, RTULPI   Square roots of the previous 4 values.
 | 
						|
*>
 | 
						|
*>             The following four arrays decode JTYPE:
 | 
						|
*>     KTYPE(j)        The general type (1-10) for type "j".
 | 
						|
*>     KMODE(j)        The MODE value to be passed to the matrix
 | 
						|
*>                     generator for type "j".
 | 
						|
*>     KMAGN(j)        The order of magnitude ( O(1),
 | 
						|
*>                     O(overflow^(1/2) ), O(underflow^(1/2) )
 | 
						|
*>     KCONDS(j)       Selectw whether CONDS is to be 1 or
 | 
						|
*>                     1/sqrt(ulp).  (0 means irrelevant.)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup double_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DDRVEV( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | 
						|
     $                   NOUNIT, A, LDA, H, WR, WI, WR1, WI1, VL, LDVL,
 | 
						|
     $                   VR, LDVR, LRE, LDLRE, RESULT, WORK, NWORK,
 | 
						|
     $                   IWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, LDLRE, LDVL, LDVR, NOUNIT, NSIZES,
 | 
						|
     $                   NTYPES, NWORK
 | 
						|
      DOUBLE PRECISION   THRESH
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            DOTYPE( * )
 | 
						|
      INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
 | 
						|
     $                   RESULT( 7 ), VL( LDVL, * ), VR( LDVR, * ),
 | 
						|
     $                   WI( * ), WI1( * ), WORK( * ), WR( * ), WR1( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | 
						|
      DOUBLE PRECISION   TWO
 | 
						|
      PARAMETER          ( TWO = 2.0D0 )
 | 
						|
      INTEGER            MAXTYP
 | 
						|
      PARAMETER          ( MAXTYP = 21 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            BADNN
 | 
						|
      CHARACTER*3        PATH
 | 
						|
      INTEGER            IINFO, IMODE, ITYPE, IWK, J, JCOL, JJ, JSIZE,
 | 
						|
     $                   JTYPE, MTYPES, N, NERRS, NFAIL, NMAX, NNWORK,
 | 
						|
     $                   NTEST, NTESTF, NTESTT
 | 
						|
      DOUBLE PRECISION   ANORM, COND, CONDS, OVFL, RTULP, RTULPI, TNRM,
 | 
						|
     $                   ULP, ULPINV, UNFL, VMX, VRMX, VTST
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      CHARACTER          ADUMMA( 1 )
 | 
						|
      INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
 | 
						|
     $                   KMAGN( MAXTYP ), KMODE( MAXTYP ),
 | 
						|
     $                   KTYPE( MAXTYP )
 | 
						|
      DOUBLE PRECISION   DUM( 1 ), RES( 2 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLAPY2, DNRM2
 | 
						|
      EXTERNAL           DLAMCH, DLAPY2, DNRM2
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEEV, DGET22, DLABAD, DLACPY, DLASET, DLASUM,
 | 
						|
     $                   DLATME, DLATMR, DLATMS, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Data statements ..
 | 
						|
      DATA               KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
 | 
						|
      DATA               KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
 | 
						|
     $                   3, 1, 2, 3 /
 | 
						|
      DATA               KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
 | 
						|
     $                   1, 5, 5, 5, 4, 3, 1 /
 | 
						|
      DATA               KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      PATH( 1: 1 ) = 'Double precision'
 | 
						|
      PATH( 2: 3 ) = 'EV'
 | 
						|
*
 | 
						|
*     Check for errors
 | 
						|
*
 | 
						|
      NTESTT = 0
 | 
						|
      NTESTF = 0
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
*     Important constants
 | 
						|
*
 | 
						|
      BADNN = .FALSE.
 | 
						|
      NMAX = 0
 | 
						|
      DO 10 J = 1, NSIZES
 | 
						|
         NMAX = MAX( NMAX, NN( J ) )
 | 
						|
         IF( NN( J ).LT.0 )
 | 
						|
     $      BADNN = .TRUE.
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
*     Check for errors
 | 
						|
*
 | 
						|
      IF( NSIZES.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( BADNN ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( NTYPES.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( THRESH.LT.ZERO ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( NOUNIT.LE.0 ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN
 | 
						|
         INFO = -9
 | 
						|
      ELSE IF( LDVL.LT.1 .OR. LDVL.LT.NMAX ) THEN
 | 
						|
         INFO = -16
 | 
						|
      ELSE IF( LDVR.LT.1 .OR. LDVR.LT.NMAX ) THEN
 | 
						|
         INFO = -18
 | 
						|
      ELSE IF( LDLRE.LT.1 .OR. LDLRE.LT.NMAX ) THEN
 | 
						|
         INFO = -20
 | 
						|
      ELSE IF( 5*NMAX+2*NMAX**2.GT.NWORK ) THEN
 | 
						|
         INFO = -23
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DDRVEV', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if nothing to do
 | 
						|
*
 | 
						|
      IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     More Important constants
 | 
						|
*
 | 
						|
      UNFL = DLAMCH( 'Safe minimum' )
 | 
						|
      OVFL = ONE / UNFL
 | 
						|
      CALL DLABAD( UNFL, OVFL )
 | 
						|
      ULP = DLAMCH( 'Precision' )
 | 
						|
      ULPINV = ONE / ULP
 | 
						|
      RTULP = SQRT( ULP )
 | 
						|
      RTULPI = ONE / RTULP
 | 
						|
*
 | 
						|
*     Loop over sizes, types
 | 
						|
*
 | 
						|
      NERRS = 0
 | 
						|
*
 | 
						|
      DO 270 JSIZE = 1, NSIZES
 | 
						|
         N = NN( JSIZE )
 | 
						|
         IF( NSIZES.NE.1 ) THEN
 | 
						|
            MTYPES = MIN( MAXTYP, NTYPES )
 | 
						|
         ELSE
 | 
						|
            MTYPES = MIN( MAXTYP+1, NTYPES )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         DO 260 JTYPE = 1, MTYPES
 | 
						|
            IF( .NOT.DOTYPE( JTYPE ) )
 | 
						|
     $         GO TO 260
 | 
						|
*
 | 
						|
*           Save ISEED in case of an error.
 | 
						|
*
 | 
						|
            DO 20 J = 1, 4
 | 
						|
               IOLDSD( J ) = ISEED( J )
 | 
						|
   20       CONTINUE
 | 
						|
*
 | 
						|
*           Compute "A"
 | 
						|
*
 | 
						|
*           Control parameters:
 | 
						|
*
 | 
						|
*           KMAGN  KCONDS  KMODE        KTYPE
 | 
						|
*       =1  O(1)   1       clustered 1  zero
 | 
						|
*       =2  large  large   clustered 2  identity
 | 
						|
*       =3  small          exponential  Jordan
 | 
						|
*       =4                 arithmetic   diagonal, (w/ eigenvalues)
 | 
						|
*       =5                 random log   symmetric, w/ eigenvalues
 | 
						|
*       =6                 random       general, w/ eigenvalues
 | 
						|
*       =7                              random diagonal
 | 
						|
*       =8                              random symmetric
 | 
						|
*       =9                              random general
 | 
						|
*       =10                             random triangular
 | 
						|
*
 | 
						|
            IF( MTYPES.GT.MAXTYP )
 | 
						|
     $         GO TO 90
 | 
						|
*
 | 
						|
            ITYPE = KTYPE( JTYPE )
 | 
						|
            IMODE = KMODE( JTYPE )
 | 
						|
*
 | 
						|
*           Compute norm
 | 
						|
*
 | 
						|
            GO TO ( 30, 40, 50 )KMAGN( JTYPE )
 | 
						|
*
 | 
						|
   30       CONTINUE
 | 
						|
            ANORM = ONE
 | 
						|
            GO TO 60
 | 
						|
*
 | 
						|
   40       CONTINUE
 | 
						|
            ANORM = OVFL*ULP
 | 
						|
            GO TO 60
 | 
						|
*
 | 
						|
   50       CONTINUE
 | 
						|
            ANORM = UNFL*ULPINV
 | 
						|
            GO TO 60
 | 
						|
*
 | 
						|
   60       CONTINUE
 | 
						|
*
 | 
						|
            CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
 | 
						|
            IINFO = 0
 | 
						|
            COND = ULPINV
 | 
						|
*
 | 
						|
*           Special Matrices -- Identity & Jordan block
 | 
						|
*
 | 
						|
*              Zero
 | 
						|
*
 | 
						|
            IF( ITYPE.EQ.1 ) THEN
 | 
						|
               IINFO = 0
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.2 ) THEN
 | 
						|
*
 | 
						|
*              Identity
 | 
						|
*
 | 
						|
               DO 70 JCOL = 1, N
 | 
						|
                  A( JCOL, JCOL ) = ANORM
 | 
						|
   70          CONTINUE
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.3 ) THEN
 | 
						|
*
 | 
						|
*              Jordan Block
 | 
						|
*
 | 
						|
               DO 80 JCOL = 1, N
 | 
						|
                  A( JCOL, JCOL ) = ANORM
 | 
						|
                  IF( JCOL.GT.1 )
 | 
						|
     $               A( JCOL, JCOL-1 ) = ONE
 | 
						|
   80          CONTINUE
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.4 ) THEN
 | 
						|
*
 | 
						|
*              Diagonal Matrix, [Eigen]values Specified
 | 
						|
*
 | 
						|
               CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
 | 
						|
     $                      ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
 | 
						|
     $                      IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.5 ) THEN
 | 
						|
*
 | 
						|
*              Symmetric, eigenvalues specified
 | 
						|
*
 | 
						|
               CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
 | 
						|
     $                      ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
 | 
						|
     $                      IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.6 ) THEN
 | 
						|
*
 | 
						|
*              General, eigenvalues specified
 | 
						|
*
 | 
						|
               IF( KCONDS( JTYPE ).EQ.1 ) THEN
 | 
						|
                  CONDS = ONE
 | 
						|
               ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
 | 
						|
                  CONDS = RTULPI
 | 
						|
               ELSE
 | 
						|
                  CONDS = ZERO
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               ADUMMA( 1 ) = ' '
 | 
						|
               CALL DLATME( N, 'S', ISEED, WORK, IMODE, COND, ONE,
 | 
						|
     $                      ADUMMA, 'T', 'T', 'T', WORK( N+1 ), 4,
 | 
						|
     $                      CONDS, N, N, ANORM, A, LDA, WORK( 2*N+1 ),
 | 
						|
     $                      IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.7 ) THEN
 | 
						|
*
 | 
						|
*              Diagonal, random eigenvalues
 | 
						|
*
 | 
						|
               CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
 | 
						|
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | 
						|
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
 | 
						|
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.8 ) THEN
 | 
						|
*
 | 
						|
*              Symmetric, random eigenvalues
 | 
						|
*
 | 
						|
               CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
 | 
						|
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | 
						|
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
 | 
						|
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.9 ) THEN
 | 
						|
*
 | 
						|
*              General, random eigenvalues
 | 
						|
*
 | 
						|
               CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
 | 
						|
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | 
						|
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
 | 
						|
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | 
						|
               IF( N.GE.4 ) THEN
 | 
						|
                  CALL DLASET( 'Full', 2, N, ZERO, ZERO, A, LDA )
 | 
						|
                  CALL DLASET( 'Full', N-3, 1, ZERO, ZERO, A( 3, 1 ),
 | 
						|
     $                         LDA )
 | 
						|
                  CALL DLASET( 'Full', N-3, 2, ZERO, ZERO, A( 3, N-1 ),
 | 
						|
     $                         LDA )
 | 
						|
                  CALL DLASET( 'Full', 1, N, ZERO, ZERO, A( N, 1 ),
 | 
						|
     $                         LDA )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.10 ) THEN
 | 
						|
*
 | 
						|
*              Triangular, random eigenvalues
 | 
						|
*
 | 
						|
               CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
 | 
						|
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | 
						|
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
 | 
						|
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
               IINFO = 1
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            IF( IINFO.NE.0 ) THEN
 | 
						|
               WRITE( NOUNIT, FMT = 9993 )'Generator', IINFO, N, JTYPE,
 | 
						|
     $            IOLDSD
 | 
						|
               INFO = ABS( IINFO )
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
*
 | 
						|
   90       CONTINUE
 | 
						|
*
 | 
						|
*           Test for minimal and generous workspace
 | 
						|
*
 | 
						|
            DO 250 IWK = 1, 2
 | 
						|
               IF( IWK.EQ.1 ) THEN
 | 
						|
                  NNWORK = 4*N
 | 
						|
               ELSE
 | 
						|
                  NNWORK = 5*N + 2*N**2
 | 
						|
               END IF
 | 
						|
               NNWORK = MAX( NNWORK, 1 )
 | 
						|
*
 | 
						|
*              Initialize RESULT
 | 
						|
*
 | 
						|
               DO 100 J = 1, 7
 | 
						|
                  RESULT( J ) = -ONE
 | 
						|
  100          CONTINUE
 | 
						|
*
 | 
						|
*              Compute eigenvalues and eigenvectors, and test them
 | 
						|
*
 | 
						|
               CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
 | 
						|
               CALL DGEEV( 'V', 'V', N, H, LDA, WR, WI, VL, LDVL, VR,
 | 
						|
     $                     LDVR, WORK, NNWORK, IINFO )
 | 
						|
               IF( IINFO.NE.0 ) THEN
 | 
						|
                  RESULT( 1 ) = ULPINV
 | 
						|
                  WRITE( NOUNIT, FMT = 9993 )'DGEEV1', IINFO, N, JTYPE,
 | 
						|
     $               IOLDSD
 | 
						|
                  INFO = ABS( IINFO )
 | 
						|
                  GO TO 220
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Do Test (1)
 | 
						|
*
 | 
						|
               CALL DGET22( 'N', 'N', 'N', N, A, LDA, VR, LDVR, WR, WI,
 | 
						|
     $                      WORK, RES )
 | 
						|
               RESULT( 1 ) = RES( 1 )
 | 
						|
*
 | 
						|
*              Do Test (2)
 | 
						|
*
 | 
						|
               CALL DGET22( 'T', 'N', 'T', N, A, LDA, VL, LDVL, WR, WI,
 | 
						|
     $                      WORK, RES )
 | 
						|
               RESULT( 2 ) = RES( 1 )
 | 
						|
*
 | 
						|
*              Do Test (3)
 | 
						|
*
 | 
						|
               DO 120 J = 1, N
 | 
						|
                  TNRM = ONE
 | 
						|
                  IF( WI( J ).EQ.ZERO ) THEN
 | 
						|
                     TNRM = DNRM2( N, VR( 1, J ), 1 )
 | 
						|
                  ELSE IF( WI( J ).GT.ZERO ) THEN
 | 
						|
                     TNRM = DLAPY2( DNRM2( N, VR( 1, J ), 1 ),
 | 
						|
     $                      DNRM2( N, VR( 1, J+1 ), 1 ) )
 | 
						|
                  END IF
 | 
						|
                  RESULT( 3 ) = MAX( RESULT( 3 ),
 | 
						|
     $                          MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) )
 | 
						|
                  IF( WI( J ).GT.ZERO ) THEN
 | 
						|
                     VMX = ZERO
 | 
						|
                     VRMX = ZERO
 | 
						|
                     DO 110 JJ = 1, N
 | 
						|
                        VTST = DLAPY2( VR( JJ, J ), VR( JJ, J+1 ) )
 | 
						|
                        IF( VTST.GT.VMX )
 | 
						|
     $                     VMX = VTST
 | 
						|
                        IF( VR( JJ, J+1 ).EQ.ZERO .AND.
 | 
						|
     $                      ABS( VR( JJ, J ) ).GT.VRMX )
 | 
						|
     $                      VRMX = ABS( VR( JJ, J ) )
 | 
						|
  110                CONTINUE
 | 
						|
                     IF( VRMX / VMX.LT.ONE-TWO*ULP )
 | 
						|
     $                  RESULT( 3 ) = ULPINV
 | 
						|
                  END IF
 | 
						|
  120          CONTINUE
 | 
						|
*
 | 
						|
*              Do Test (4)
 | 
						|
*
 | 
						|
               DO 140 J = 1, N
 | 
						|
                  TNRM = ONE
 | 
						|
                  IF( WI( J ).EQ.ZERO ) THEN
 | 
						|
                     TNRM = DNRM2( N, VL( 1, J ), 1 )
 | 
						|
                  ELSE IF( WI( J ).GT.ZERO ) THEN
 | 
						|
                     TNRM = DLAPY2( DNRM2( N, VL( 1, J ), 1 ),
 | 
						|
     $                      DNRM2( N, VL( 1, J+1 ), 1 ) )
 | 
						|
                  END IF
 | 
						|
                  RESULT( 4 ) = MAX( RESULT( 4 ),
 | 
						|
     $                          MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) )
 | 
						|
                  IF( WI( J ).GT.ZERO ) THEN
 | 
						|
                     VMX = ZERO
 | 
						|
                     VRMX = ZERO
 | 
						|
                     DO 130 JJ = 1, N
 | 
						|
                        VTST = DLAPY2( VL( JJ, J ), VL( JJ, J+1 ) )
 | 
						|
                        IF( VTST.GT.VMX )
 | 
						|
     $                     VMX = VTST
 | 
						|
                        IF( VL( JJ, J+1 ).EQ.ZERO .AND.
 | 
						|
     $                      ABS( VL( JJ, J ) ).GT.VRMX )
 | 
						|
     $                      VRMX = ABS( VL( JJ, J ) )
 | 
						|
  130                CONTINUE
 | 
						|
                     IF( VRMX / VMX.LT.ONE-TWO*ULP )
 | 
						|
     $                  RESULT( 4 ) = ULPINV
 | 
						|
                  END IF
 | 
						|
  140          CONTINUE
 | 
						|
*
 | 
						|
*              Compute eigenvalues only, and test them
 | 
						|
*
 | 
						|
               CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
 | 
						|
               CALL DGEEV( 'N', 'N', N, H, LDA, WR1, WI1, DUM, 1, DUM,
 | 
						|
     $                     1, WORK, NNWORK, IINFO )
 | 
						|
               IF( IINFO.NE.0 ) THEN
 | 
						|
                  RESULT( 1 ) = ULPINV
 | 
						|
                  WRITE( NOUNIT, FMT = 9993 )'DGEEV2', IINFO, N, JTYPE,
 | 
						|
     $               IOLDSD
 | 
						|
                  INFO = ABS( IINFO )
 | 
						|
                  GO TO 220
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Do Test (5)
 | 
						|
*
 | 
						|
               DO 150 J = 1, N
 | 
						|
                  IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
 | 
						|
     $               RESULT( 5 ) = ULPINV
 | 
						|
  150          CONTINUE
 | 
						|
*
 | 
						|
*              Compute eigenvalues and right eigenvectors, and test them
 | 
						|
*
 | 
						|
               CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
 | 
						|
               CALL DGEEV( 'N', 'V', N, H, LDA, WR1, WI1, DUM, 1, LRE,
 | 
						|
     $                     LDLRE, WORK, NNWORK, IINFO )
 | 
						|
               IF( IINFO.NE.0 ) THEN
 | 
						|
                  RESULT( 1 ) = ULPINV
 | 
						|
                  WRITE( NOUNIT, FMT = 9993 )'DGEEV3', IINFO, N, JTYPE,
 | 
						|
     $               IOLDSD
 | 
						|
                  INFO = ABS( IINFO )
 | 
						|
                  GO TO 220
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Do Test (5) again
 | 
						|
*
 | 
						|
               DO 160 J = 1, N
 | 
						|
                  IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
 | 
						|
     $               RESULT( 5 ) = ULPINV
 | 
						|
  160          CONTINUE
 | 
						|
*
 | 
						|
*              Do Test (6)
 | 
						|
*
 | 
						|
               DO 180 J = 1, N
 | 
						|
                  DO 170 JJ = 1, N
 | 
						|
                     IF( VR( J, JJ ).NE.LRE( J, JJ ) )
 | 
						|
     $                  RESULT( 6 ) = ULPINV
 | 
						|
  170             CONTINUE
 | 
						|
  180          CONTINUE
 | 
						|
*
 | 
						|
*              Compute eigenvalues and left eigenvectors, and test them
 | 
						|
*
 | 
						|
               CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
 | 
						|
               CALL DGEEV( 'V', 'N', N, H, LDA, WR1, WI1, LRE, LDLRE,
 | 
						|
     $                     DUM, 1, WORK, NNWORK, IINFO )
 | 
						|
               IF( IINFO.NE.0 ) THEN
 | 
						|
                  RESULT( 1 ) = ULPINV
 | 
						|
                  WRITE( NOUNIT, FMT = 9993 )'DGEEV4', IINFO, N, JTYPE,
 | 
						|
     $               IOLDSD
 | 
						|
                  INFO = ABS( IINFO )
 | 
						|
                  GO TO 220
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Do Test (5) again
 | 
						|
*
 | 
						|
               DO 190 J = 1, N
 | 
						|
                  IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
 | 
						|
     $               RESULT( 5 ) = ULPINV
 | 
						|
  190          CONTINUE
 | 
						|
*
 | 
						|
*              Do Test (7)
 | 
						|
*
 | 
						|
               DO 210 J = 1, N
 | 
						|
                  DO 200 JJ = 1, N
 | 
						|
                     IF( VL( J, JJ ).NE.LRE( J, JJ ) )
 | 
						|
     $                  RESULT( 7 ) = ULPINV
 | 
						|
  200             CONTINUE
 | 
						|
  210          CONTINUE
 | 
						|
*
 | 
						|
*              End of Loop -- Check for RESULT(j) > THRESH
 | 
						|
*
 | 
						|
  220          CONTINUE
 | 
						|
*
 | 
						|
               NTEST = 0
 | 
						|
               NFAIL = 0
 | 
						|
               DO 230 J = 1, 7
 | 
						|
                  IF( RESULT( J ).GE.ZERO )
 | 
						|
     $               NTEST = NTEST + 1
 | 
						|
                  IF( RESULT( J ).GE.THRESH )
 | 
						|
     $               NFAIL = NFAIL + 1
 | 
						|
  230          CONTINUE
 | 
						|
*
 | 
						|
               IF( NFAIL.GT.0 )
 | 
						|
     $            NTESTF = NTESTF + 1
 | 
						|
               IF( NTESTF.EQ.1 ) THEN
 | 
						|
                  WRITE( NOUNIT, FMT = 9999 )PATH
 | 
						|
                  WRITE( NOUNIT, FMT = 9998 )
 | 
						|
                  WRITE( NOUNIT, FMT = 9997 )
 | 
						|
                  WRITE( NOUNIT, FMT = 9996 )
 | 
						|
                  WRITE( NOUNIT, FMT = 9995 )THRESH
 | 
						|
                  NTESTF = 2
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               DO 240 J = 1, 7
 | 
						|
                  IF( RESULT( J ).GE.THRESH ) THEN
 | 
						|
                     WRITE( NOUNIT, FMT = 9994 )N, IWK, IOLDSD, JTYPE,
 | 
						|
     $                  J, RESULT( J )
 | 
						|
                  END IF
 | 
						|
  240          CONTINUE
 | 
						|
*
 | 
						|
               NERRS = NERRS + NFAIL
 | 
						|
               NTESTT = NTESTT + NTEST
 | 
						|
*
 | 
						|
  250       CONTINUE
 | 
						|
  260    CONTINUE
 | 
						|
  270 CONTINUE
 | 
						|
*
 | 
						|
*     Summary
 | 
						|
*
 | 
						|
      CALL DLASUM( PATH, NOUNIT, NERRS, NTESTT )
 | 
						|
*
 | 
						|
 9999 FORMAT( / 1X, A3, ' -- Real Eigenvalue-Eigenvector Decomposition',
 | 
						|
     $      ' Driver', / ' Matrix types (see DDRVEV for details): ' )
 | 
						|
*
 | 
						|
 9998 FORMAT( / ' Special Matrices:', / '  1=Zero matrix.             ',
 | 
						|
     $      '           ', '  5=Diagonal: geometr. spaced entries.',
 | 
						|
     $      / '  2=Identity matrix.                    ', '  6=Diagona',
 | 
						|
     $      'l: clustered entries.', / '  3=Transposed Jordan block.  ',
 | 
						|
     $      '          ', '  7=Diagonal: large, evenly spaced.', / '  ',
 | 
						|
     $      '4=Diagonal: evenly spaced entries.    ', '  8=Diagonal: s',
 | 
						|
     $      'mall, evenly spaced.' )
 | 
						|
 9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / '  9=Well-cond., ev',
 | 
						|
     $      'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
 | 
						|
     $      'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
 | 
						|
     $      ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
 | 
						|
     $      'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
 | 
						|
     $      'lex ', / ' 12=Well-cond., random complex ', 6X, '   ',
 | 
						|
     $      ' 17=Ill-cond., large rand. complx ', / ' 13=Ill-condi',
 | 
						|
     $      'tioned, evenly spaced.     ', ' 18=Ill-cond., small rand.',
 | 
						|
     $      ' complx ' )
 | 
						|
 9996 FORMAT( ' 19=Matrix with random O(1) entries.    ', ' 21=Matrix ',
 | 
						|
     $      'with small random entries.', / ' 20=Matrix with large ran',
 | 
						|
     $      'dom entries.   ', / )
 | 
						|
 9995 FORMAT( ' Tests performed with test threshold =', F8.2,
 | 
						|
     $      / / ' 1 = | A VR - VR W | / ( n |A| ulp ) ',
 | 
						|
     $      / ' 2 = | transpose(A) VL - VL W | / ( n |A| ulp ) ',
 | 
						|
     $      / ' 3 = | |VR(i)| - 1 | / ulp ',
 | 
						|
     $      / ' 4 = | |VL(i)| - 1 | / ulp ',
 | 
						|
     $      / ' 5 = 0 if W same no matter if VR or VL computed,',
 | 
						|
     $      ' 1/ulp otherwise', /
 | 
						|
     $      ' 6 = 0 if VR same no matter if VL computed,',
 | 
						|
     $      '  1/ulp otherwise', /
 | 
						|
     $      ' 7 = 0 if VL same no matter if VR computed,',
 | 
						|
     $      '  1/ulp otherwise', / )
 | 
						|
 9994 FORMAT( ' N=', I5, ', IWK=', I2, ', seed=', 4( I4, ',' ),
 | 
						|
     $      ' type ', I2, ', test(', I2, ')=', G10.3 )
 | 
						|
 9993 FORMAT( ' DDRVEV: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
 | 
						|
     $      I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DDRVEV
 | 
						|
*
 | 
						|
      END
 |