962 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			962 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DDRVES
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DDRVES( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | 
						|
*                          NOUNIT, A, LDA, H, HT, WR, WI, WRT, WIT, VS,
 | 
						|
*                          LDVS, RESULT, WORK, NWORK, IWORK, BWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, LDVS, NOUNIT, NSIZES, NTYPES, NWORK
 | 
						|
*       DOUBLE PRECISION   THRESH
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            BWORK( * ), DOTYPE( * )
 | 
						|
*       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), H( LDA, * ), HT( LDA, * ),
 | 
						|
*      $                   RESULT( 13 ), VS( LDVS, * ), WI( * ), WIT( * ),
 | 
						|
*      $                   WORK( * ), WR( * ), WRT( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>    DDRVES checks the nonsymmetric eigenvalue (Schur form) problem
 | 
						|
*>    driver DGEES.
 | 
						|
*>
 | 
						|
*>    When DDRVES is called, a number of matrix "sizes" ("n's") and a
 | 
						|
*>    number of matrix "types" are specified.  For each size ("n")
 | 
						|
*>    and each type of matrix, one matrix will be generated and used
 | 
						|
*>    to test the nonsymmetric eigenroutines.  For each matrix, 13
 | 
						|
*>    tests will be performed:
 | 
						|
*>
 | 
						|
*>    (1)     0 if T is in Schur form, 1/ulp otherwise
 | 
						|
*>           (no sorting of eigenvalues)
 | 
						|
*>
 | 
						|
*>    (2)     | A - VS T VS' | / ( n |A| ulp )
 | 
						|
*>
 | 
						|
*>      Here VS is the matrix of Schur eigenvectors, and T is in Schur
 | 
						|
*>      form  (no sorting of eigenvalues).
 | 
						|
*>
 | 
						|
*>    (3)     | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues).
 | 
						|
*>
 | 
						|
*>    (4)     0     if WR+sqrt(-1)*WI are eigenvalues of T
 | 
						|
*>            1/ulp otherwise
 | 
						|
*>            (no sorting of eigenvalues)
 | 
						|
*>
 | 
						|
*>    (5)     0     if T(with VS) = T(without VS),
 | 
						|
*>            1/ulp otherwise
 | 
						|
*>            (no sorting of eigenvalues)
 | 
						|
*>
 | 
						|
*>    (6)     0     if eigenvalues(with VS) = eigenvalues(without VS),
 | 
						|
*>            1/ulp otherwise
 | 
						|
*>            (no sorting of eigenvalues)
 | 
						|
*>
 | 
						|
*>    (7)     0 if T is in Schur form, 1/ulp otherwise
 | 
						|
*>            (with sorting of eigenvalues)
 | 
						|
*>
 | 
						|
*>    (8)     | A - VS T VS' | / ( n |A| ulp )
 | 
						|
*>
 | 
						|
*>      Here VS is the matrix of Schur eigenvectors, and T is in Schur
 | 
						|
*>      form  (with sorting of eigenvalues).
 | 
						|
*>
 | 
						|
*>    (9)     | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues).
 | 
						|
*>
 | 
						|
*>    (10)    0     if WR+sqrt(-1)*WI are eigenvalues of T
 | 
						|
*>            1/ulp otherwise
 | 
						|
*>            (with sorting of eigenvalues)
 | 
						|
*>
 | 
						|
*>    (11)    0     if T(with VS) = T(without VS),
 | 
						|
*>            1/ulp otherwise
 | 
						|
*>            (with sorting of eigenvalues)
 | 
						|
*>
 | 
						|
*>    (12)    0     if eigenvalues(with VS) = eigenvalues(without VS),
 | 
						|
*>            1/ulp otherwise
 | 
						|
*>            (with sorting of eigenvalues)
 | 
						|
*>
 | 
						|
*>    (13)    if sorting worked and SDIM is the number of
 | 
						|
*>            eigenvalues which were SELECTed
 | 
						|
*>
 | 
						|
*>    The "sizes" are specified by an array NN(1:NSIZES); the value of
 | 
						|
*>    each element NN(j) specifies one size.
 | 
						|
*>    The "types" are specified by a logical array DOTYPE( 1:NTYPES );
 | 
						|
*>    if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
 | 
						|
*>    Currently, the list of possible types is:
 | 
						|
*>
 | 
						|
*>    (1)  The zero matrix.
 | 
						|
*>    (2)  The identity matrix.
 | 
						|
*>    (3)  A (transposed) Jordan block, with 1's on the diagonal.
 | 
						|
*>
 | 
						|
*>    (4)  A diagonal matrix with evenly spaced entries
 | 
						|
*>         1, ..., ULP  and random signs.
 | 
						|
*>         (ULP = (first number larger than 1) - 1 )
 | 
						|
*>    (5)  A diagonal matrix with geometrically spaced entries
 | 
						|
*>         1, ..., ULP  and random signs.
 | 
						|
*>    (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
 | 
						|
*>         and random signs.
 | 
						|
*>
 | 
						|
*>    (7)  Same as (4), but multiplied by a constant near
 | 
						|
*>         the overflow threshold
 | 
						|
*>    (8)  Same as (4), but multiplied by a constant near
 | 
						|
*>         the underflow threshold
 | 
						|
*>
 | 
						|
*>    (9)  A matrix of the form  U' T U, where U is orthogonal and
 | 
						|
*>         T has evenly spaced entries 1, ..., ULP with random signs
 | 
						|
*>         on the diagonal and random O(1) entries in the upper
 | 
						|
*>         triangle.
 | 
						|
*>
 | 
						|
*>    (10) A matrix of the form  U' T U, where U is orthogonal and
 | 
						|
*>         T has geometrically spaced entries 1, ..., ULP with random
 | 
						|
*>         signs on the diagonal and random O(1) entries in the upper
 | 
						|
*>         triangle.
 | 
						|
*>
 | 
						|
*>    (11) A matrix of the form  U' T U, where U is orthogonal and
 | 
						|
*>         T has "clustered" entries 1, ULP,..., ULP with random
 | 
						|
*>         signs on the diagonal and random O(1) entries in the upper
 | 
						|
*>         triangle.
 | 
						|
*>
 | 
						|
*>    (12) A matrix of the form  U' T U, where U is orthogonal and
 | 
						|
*>         T has real or complex conjugate paired eigenvalues randomly
 | 
						|
*>         chosen from ( ULP, 1 ) and random O(1) entries in the upper
 | 
						|
*>         triangle.
 | 
						|
*>
 | 
						|
*>    (13) A matrix of the form  X' T X, where X has condition
 | 
						|
*>         SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
 | 
						|
*>         with random signs on the diagonal and random O(1) entries
 | 
						|
*>         in the upper triangle.
 | 
						|
*>
 | 
						|
*>    (14) A matrix of the form  X' T X, where X has condition
 | 
						|
*>         SQRT( ULP ) and T has geometrically spaced entries
 | 
						|
*>         1, ..., ULP with random signs on the diagonal and random
 | 
						|
*>         O(1) entries in the upper triangle.
 | 
						|
*>
 | 
						|
*>    (15) A matrix of the form  X' T X, where X has condition
 | 
						|
*>         SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
 | 
						|
*>         with random signs on the diagonal and random O(1) entries
 | 
						|
*>         in the upper triangle.
 | 
						|
*>
 | 
						|
*>    (16) A matrix of the form  X' T X, where X has condition
 | 
						|
*>         SQRT( ULP ) and T has real or complex conjugate paired
 | 
						|
*>         eigenvalues randomly chosen from ( ULP, 1 ) and random
 | 
						|
*>         O(1) entries in the upper triangle.
 | 
						|
*>
 | 
						|
*>    (17) Same as (16), but multiplied by a constant
 | 
						|
*>         near the overflow threshold
 | 
						|
*>    (18) Same as (16), but multiplied by a constant
 | 
						|
*>         near the underflow threshold
 | 
						|
*>
 | 
						|
*>    (19) Nonsymmetric matrix with random entries chosen from (-1,1).
 | 
						|
*>         If N is at least 4, all entries in first two rows and last
 | 
						|
*>         row, and first column and last two columns are zero.
 | 
						|
*>    (20) Same as (19), but multiplied by a constant
 | 
						|
*>         near the overflow threshold
 | 
						|
*>    (21) Same as (19), but multiplied by a constant
 | 
						|
*>         near the underflow threshold
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] NSIZES
 | 
						|
*> \verbatim
 | 
						|
*>          NSIZES is INTEGER
 | 
						|
*>          The number of sizes of matrices to use.  If it is zero,
 | 
						|
*>          DDRVES does nothing.  It must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NN
 | 
						|
*> \verbatim
 | 
						|
*>          NN is INTEGER array, dimension (NSIZES)
 | 
						|
*>          An array containing the sizes to be used for the matrices.
 | 
						|
*>          Zero values will be skipped.  The values must be at least
 | 
						|
*>          zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NTYPES
 | 
						|
*> \verbatim
 | 
						|
*>          NTYPES is INTEGER
 | 
						|
*>          The number of elements in DOTYPE.   If it is zero, DDRVES
 | 
						|
*>          does nothing.  It must be at least zero.  If it is MAXTYP+1
 | 
						|
*>          and NSIZES is 1, then an additional type, MAXTYP+1 is
 | 
						|
*>          defined, which is to use whatever matrix is in A.  This
 | 
						|
*>          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
 | 
						|
*>          DOTYPE(MAXTYP+1) is .TRUE. .
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DOTYPE
 | 
						|
*> \verbatim
 | 
						|
*>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | 
						|
*>          If DOTYPE(j) is .TRUE., then for each size in NN a
 | 
						|
*>          matrix of that size and of type j will be generated.
 | 
						|
*>          If NTYPES is smaller than the maximum number of types
 | 
						|
*>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
 | 
						|
*>          MAXTYP will not be generated.  If NTYPES is larger
 | 
						|
*>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
 | 
						|
*>          will be ignored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ISEED
 | 
						|
*> \verbatim
 | 
						|
*>          ISEED is INTEGER array, dimension (4)
 | 
						|
*>          On entry ISEED specifies the seed of the random number
 | 
						|
*>          generator. The array elements should be between 0 and 4095;
 | 
						|
*>          if not they will be reduced mod 4096.  Also, ISEED(4) must
 | 
						|
*>          be odd.  The random number generator uses a linear
 | 
						|
*>          congruential sequence limited to small integers, and so
 | 
						|
*>          should produce machine independent random numbers. The
 | 
						|
*>          values of ISEED are changed on exit, and can be used in the
 | 
						|
*>          next call to DDRVES to continue the same random number
 | 
						|
*>          sequence.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] THRESH
 | 
						|
*> \verbatim
 | 
						|
*>          THRESH is DOUBLE PRECISION
 | 
						|
*>          A test will count as "failed" if the "error", computed as
 | 
						|
*>          described above, exceeds THRESH.  Note that the error
 | 
						|
*>          is scaled to be O(1), so THRESH should be a reasonably
 | 
						|
*>          small multiple of 1, e.g., 10 or 100.  In particular,
 | 
						|
*>          it should not depend on the precision (single vs. double)
 | 
						|
*>          or the size of the matrix.  It must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NOUNIT
 | 
						|
*> \verbatim
 | 
						|
*>          NOUNIT is INTEGER
 | 
						|
*>          The FORTRAN unit number for printing out error messages
 | 
						|
*>          (e.g., if a routine returns INFO not equal to 0.)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA, max(NN))
 | 
						|
*>          Used to hold the matrix whose eigenvalues are to be
 | 
						|
*>          computed.  On exit, A contains the last matrix actually used.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of A, and H. LDA must be at
 | 
						|
*>          least 1 and at least max(NN).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] H
 | 
						|
*> \verbatim
 | 
						|
*>          H is DOUBLE PRECISION array, dimension (LDA, max(NN))
 | 
						|
*>          Another copy of the test matrix A, modified by DGEES.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] HT
 | 
						|
*> \verbatim
 | 
						|
*>          HT is DOUBLE PRECISION array, dimension (LDA, max(NN))
 | 
						|
*>          Yet another copy of the test matrix A, modified by DGEES.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WR
 | 
						|
*> \verbatim
 | 
						|
*>          WR is DOUBLE PRECISION array, dimension (max(NN))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WI
 | 
						|
*> \verbatim
 | 
						|
*>          WI is DOUBLE PRECISION array, dimension (max(NN))
 | 
						|
*>
 | 
						|
*>          The real and imaginary parts of the eigenvalues of A.
 | 
						|
*>          On exit, WR + WI*i are the eigenvalues of the matrix in A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WRT
 | 
						|
*> \verbatim
 | 
						|
*>          WRT is DOUBLE PRECISION array, dimension (max(NN))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WIT
 | 
						|
*> \verbatim
 | 
						|
*>          WIT is DOUBLE PRECISION array, dimension (max(NN))
 | 
						|
*>
 | 
						|
*>          Like WR, WI, these arrays contain the eigenvalues of A,
 | 
						|
*>          but those computed when DGEES only computes a partial
 | 
						|
*>          eigendecomposition, i.e. not Schur vectors
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VS
 | 
						|
*> \verbatim
 | 
						|
*>          VS is DOUBLE PRECISION array, dimension (LDVS, max(NN))
 | 
						|
*>          VS holds the computed Schur vectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVS
 | 
						|
*> \verbatim
 | 
						|
*>          LDVS is INTEGER
 | 
						|
*>          Leading dimension of VS. Must be at least max(1,max(NN)).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is DOUBLE PRECISION array, dimension (13)
 | 
						|
*>          The values computed by the 13 tests described above.
 | 
						|
*>          The values are currently limited to 1/ulp, to avoid overflow.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (NWORK)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NWORK
 | 
						|
*> \verbatim
 | 
						|
*>          NWORK is INTEGER
 | 
						|
*>          The number of entries in WORK.  This must be at least
 | 
						|
*>          5*NN(j)+2*NN(j)**2 for all j.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (max(NN))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BWORK
 | 
						|
*> \verbatim
 | 
						|
*>          BWORK is LOGICAL array, dimension (max(NN))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          If 0, then everything ran OK.
 | 
						|
*>           -1: NSIZES < 0
 | 
						|
*>           -2: Some NN(j) < 0
 | 
						|
*>           -3: NTYPES < 0
 | 
						|
*>           -6: THRESH < 0
 | 
						|
*>           -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
 | 
						|
*>          -17: LDVS < 1 or LDVS < NMAX, where NMAX is max( NN(j) ).
 | 
						|
*>          -20: NWORK too small.
 | 
						|
*>          If  DLATMR, SLATMS, SLATME or DGEES returns an error code,
 | 
						|
*>              the absolute value of it is returned.
 | 
						|
*>
 | 
						|
*>-----------------------------------------------------------------------
 | 
						|
*>
 | 
						|
*>     Some Local Variables and Parameters:
 | 
						|
*>     ---- ----- --------- --- ----------
 | 
						|
*>
 | 
						|
*>     ZERO, ONE       Real 0 and 1.
 | 
						|
*>     MAXTYP          The number of types defined.
 | 
						|
*>     NMAX            Largest value in NN.
 | 
						|
*>     NERRS           The number of tests which have exceeded THRESH
 | 
						|
*>     COND, CONDS,
 | 
						|
*>     IMODE           Values to be passed to the matrix generators.
 | 
						|
*>     ANORM           Norm of A; passed to matrix generators.
 | 
						|
*>
 | 
						|
*>     OVFL, UNFL      Overflow and underflow thresholds.
 | 
						|
*>     ULP, ULPINV     Finest relative precision and its inverse.
 | 
						|
*>     RTULP, RTULPI   Square roots of the previous 4 values.
 | 
						|
*>
 | 
						|
*>             The following four arrays decode JTYPE:
 | 
						|
*>     KTYPE(j)        The general type (1-10) for type "j".
 | 
						|
*>     KMODE(j)        The MODE value to be passed to the matrix
 | 
						|
*>                     generator for type "j".
 | 
						|
*>     KMAGN(j)        The order of magnitude ( O(1),
 | 
						|
*>                     O(overflow^(1/2) ), O(underflow^(1/2) )
 | 
						|
*>     KCONDS(j)       Selectw whether CONDS is to be 1 or
 | 
						|
*>                     1/sqrt(ulp).  (0 means irrelevant.)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date June 2016
 | 
						|
*
 | 
						|
*> \ingroup double_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DDRVES( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | 
						|
     $                   NOUNIT, A, LDA, H, HT, WR, WI, WRT, WIT, VS,
 | 
						|
     $                   LDVS, RESULT, WORK, NWORK, IWORK, BWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     June 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, LDVS, NOUNIT, NSIZES, NTYPES, NWORK
 | 
						|
      DOUBLE PRECISION   THRESH
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            BWORK( * ), DOTYPE( * )
 | 
						|
      INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), H( LDA, * ), HT( LDA, * ),
 | 
						|
     $                   RESULT( 13 ), VS( LDVS, * ), WI( * ), WIT( * ),
 | 
						|
     $                   WORK( * ), WR( * ), WRT( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | 
						|
      INTEGER            MAXTYP
 | 
						|
      PARAMETER          ( MAXTYP = 21 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            BADNN
 | 
						|
      CHARACTER          SORT
 | 
						|
      CHARACTER*3        PATH
 | 
						|
      INTEGER            I, IINFO, IMODE, ISORT, ITYPE, IWK, J, JCOL,
 | 
						|
     $                   JSIZE, JTYPE, KNTEIG, LWORK, MTYPES, N, NERRS,
 | 
						|
     $                   NFAIL, NMAX, NNWORK, NTEST, NTESTF, NTESTT,
 | 
						|
     $                   RSUB, SDIM
 | 
						|
      DOUBLE PRECISION   ANORM, COND, CONDS, OVFL, RTULP, RTULPI, TMP,
 | 
						|
     $                   ULP, ULPINV, UNFL
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      CHARACTER          ADUMMA( 1 )
 | 
						|
      INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
 | 
						|
     $                   KMAGN( MAXTYP ), KMODE( MAXTYP ),
 | 
						|
     $                   KTYPE( MAXTYP )
 | 
						|
      DOUBLE PRECISION   RES( 2 )
 | 
						|
*     ..
 | 
						|
*     .. Arrays in Common ..
 | 
						|
      LOGICAL            SELVAL( 20 )
 | 
						|
      DOUBLE PRECISION   SELWI( 20 ), SELWR( 20 )
 | 
						|
*     ..
 | 
						|
*     .. Scalars in Common ..
 | 
						|
      INTEGER            SELDIM, SELOPT
 | 
						|
*     ..
 | 
						|
*     .. Common blocks ..
 | 
						|
      COMMON             / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            DSLECT
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL           DSLECT, DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEES, DHST01, DLABAD, DLACPY, DLASET, DLASUM,
 | 
						|
     $                   DLATME, DLATMR, DLATMS, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, SIGN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Data statements ..
 | 
						|
      DATA               KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
 | 
						|
      DATA               KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
 | 
						|
     $                   3, 1, 2, 3 /
 | 
						|
      DATA               KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
 | 
						|
     $                   1, 5, 5, 5, 4, 3, 1 /
 | 
						|
      DATA               KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      PATH( 1: 1 ) = 'Double precision'
 | 
						|
      PATH( 2: 3 ) = 'ES'
 | 
						|
*
 | 
						|
*     Check for errors
 | 
						|
*
 | 
						|
      NTESTT = 0
 | 
						|
      NTESTF = 0
 | 
						|
      INFO = 0
 | 
						|
      SELOPT = 0
 | 
						|
*
 | 
						|
*     Important constants
 | 
						|
*
 | 
						|
      BADNN = .FALSE.
 | 
						|
      NMAX = 0
 | 
						|
      DO 10 J = 1, NSIZES
 | 
						|
         NMAX = MAX( NMAX, NN( J ) )
 | 
						|
         IF( NN( J ).LT.0 )
 | 
						|
     $      BADNN = .TRUE.
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
*     Check for errors
 | 
						|
*
 | 
						|
      IF( NSIZES.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( BADNN ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( NTYPES.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( THRESH.LT.ZERO ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( NOUNIT.LE.0 ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN
 | 
						|
         INFO = -9
 | 
						|
      ELSE IF( LDVS.LT.1 .OR. LDVS.LT.NMAX ) THEN
 | 
						|
         INFO = -17
 | 
						|
      ELSE IF( 5*NMAX+2*NMAX**2.GT.NWORK ) THEN
 | 
						|
         INFO = -20
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DDRVES', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if nothing to do
 | 
						|
*
 | 
						|
      IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     More Important constants
 | 
						|
*
 | 
						|
      UNFL = DLAMCH( 'Safe minimum' )
 | 
						|
      OVFL = ONE / UNFL
 | 
						|
      CALL DLABAD( UNFL, OVFL )
 | 
						|
      ULP = DLAMCH( 'Precision' )
 | 
						|
      ULPINV = ONE / ULP
 | 
						|
      RTULP = SQRT( ULP )
 | 
						|
      RTULPI = ONE / RTULP
 | 
						|
*
 | 
						|
*     Loop over sizes, types
 | 
						|
*
 | 
						|
      NERRS = 0
 | 
						|
*
 | 
						|
      DO 270 JSIZE = 1, NSIZES
 | 
						|
         N = NN( JSIZE )
 | 
						|
         MTYPES = MAXTYP
 | 
						|
         IF( NSIZES.EQ.1 .AND. NTYPES.EQ.MAXTYP+1 )
 | 
						|
     $      MTYPES = MTYPES + 1
 | 
						|
*
 | 
						|
         DO 260 JTYPE = 1, MTYPES
 | 
						|
            IF( .NOT.DOTYPE( JTYPE ) )
 | 
						|
     $         GO TO 260
 | 
						|
*
 | 
						|
*           Save ISEED in case of an error.
 | 
						|
*
 | 
						|
            DO 20 J = 1, 4
 | 
						|
               IOLDSD( J ) = ISEED( J )
 | 
						|
   20       CONTINUE
 | 
						|
*
 | 
						|
*           Compute "A"
 | 
						|
*
 | 
						|
*           Control parameters:
 | 
						|
*
 | 
						|
*           KMAGN  KCONDS  KMODE        KTYPE
 | 
						|
*       =1  O(1)   1       clustered 1  zero
 | 
						|
*       =2  large  large   clustered 2  identity
 | 
						|
*       =3  small          exponential  Jordan
 | 
						|
*       =4                 arithmetic   diagonal, (w/ eigenvalues)
 | 
						|
*       =5                 random log   symmetric, w/ eigenvalues
 | 
						|
*       =6                 random       general, w/ eigenvalues
 | 
						|
*       =7                              random diagonal
 | 
						|
*       =8                              random symmetric
 | 
						|
*       =9                              random general
 | 
						|
*       =10                             random triangular
 | 
						|
*
 | 
						|
            IF( MTYPES.GT.MAXTYP )
 | 
						|
     $         GO TO 90
 | 
						|
*
 | 
						|
            ITYPE = KTYPE( JTYPE )
 | 
						|
            IMODE = KMODE( JTYPE )
 | 
						|
*
 | 
						|
*           Compute norm
 | 
						|
*
 | 
						|
            GO TO ( 30, 40, 50 )KMAGN( JTYPE )
 | 
						|
*
 | 
						|
   30       CONTINUE
 | 
						|
            ANORM = ONE
 | 
						|
            GO TO 60
 | 
						|
*
 | 
						|
   40       CONTINUE
 | 
						|
            ANORM = OVFL*ULP
 | 
						|
            GO TO 60
 | 
						|
*
 | 
						|
   50       CONTINUE
 | 
						|
            ANORM = UNFL*ULPINV
 | 
						|
            GO TO 60
 | 
						|
*
 | 
						|
   60       CONTINUE
 | 
						|
*
 | 
						|
            CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
 | 
						|
            IINFO = 0
 | 
						|
            COND = ULPINV
 | 
						|
*
 | 
						|
*           Special Matrices -- Identity & Jordan block
 | 
						|
*
 | 
						|
*              Zero
 | 
						|
*
 | 
						|
            IF( ITYPE.EQ.1 ) THEN
 | 
						|
               IINFO = 0
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.2 ) THEN
 | 
						|
*
 | 
						|
*              Identity
 | 
						|
*
 | 
						|
               DO 70 JCOL = 1, N
 | 
						|
                  A( JCOL, JCOL ) = ANORM
 | 
						|
   70          CONTINUE
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.3 ) THEN
 | 
						|
*
 | 
						|
*              Jordan Block
 | 
						|
*
 | 
						|
               DO 80 JCOL = 1, N
 | 
						|
                  A( JCOL, JCOL ) = ANORM
 | 
						|
                  IF( JCOL.GT.1 )
 | 
						|
     $               A( JCOL, JCOL-1 ) = ONE
 | 
						|
   80          CONTINUE
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.4 ) THEN
 | 
						|
*
 | 
						|
*              Diagonal Matrix, [Eigen]values Specified
 | 
						|
*
 | 
						|
               CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
 | 
						|
     $                      ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
 | 
						|
     $                      IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.5 ) THEN
 | 
						|
*
 | 
						|
*              Symmetric, eigenvalues specified
 | 
						|
*
 | 
						|
               CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
 | 
						|
     $                      ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
 | 
						|
     $                      IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.6 ) THEN
 | 
						|
*
 | 
						|
*              General, eigenvalues specified
 | 
						|
*
 | 
						|
               IF( KCONDS( JTYPE ).EQ.1 ) THEN
 | 
						|
                  CONDS = ONE
 | 
						|
               ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
 | 
						|
                  CONDS = RTULPI
 | 
						|
               ELSE
 | 
						|
                  CONDS = ZERO
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               ADUMMA( 1 ) = ' '
 | 
						|
               CALL DLATME( N, 'S', ISEED, WORK, IMODE, COND, ONE,
 | 
						|
     $                      ADUMMA, 'T', 'T', 'T', WORK( N+1 ), 4,
 | 
						|
     $                      CONDS, N, N, ANORM, A, LDA, WORK( 2*N+1 ),
 | 
						|
     $                      IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.7 ) THEN
 | 
						|
*
 | 
						|
*              Diagonal, random eigenvalues
 | 
						|
*
 | 
						|
               CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
 | 
						|
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | 
						|
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
 | 
						|
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.8 ) THEN
 | 
						|
*
 | 
						|
*              Symmetric, random eigenvalues
 | 
						|
*
 | 
						|
               CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
 | 
						|
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | 
						|
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
 | 
						|
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.9 ) THEN
 | 
						|
*
 | 
						|
*              General, random eigenvalues
 | 
						|
*
 | 
						|
               CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
 | 
						|
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | 
						|
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
 | 
						|
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | 
						|
               IF( N.GE.4 ) THEN
 | 
						|
                  CALL DLASET( 'Full', 2, N, ZERO, ZERO, A, LDA )
 | 
						|
                  CALL DLASET( 'Full', N-3, 1, ZERO, ZERO, A( 3, 1 ),
 | 
						|
     $                         LDA )
 | 
						|
                  CALL DLASET( 'Full', N-3, 2, ZERO, ZERO, A( 3, N-1 ),
 | 
						|
     $                         LDA )
 | 
						|
                  CALL DLASET( 'Full', 1, N, ZERO, ZERO, A( N, 1 ),
 | 
						|
     $                         LDA )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.10 ) THEN
 | 
						|
*
 | 
						|
*              Triangular, random eigenvalues
 | 
						|
*
 | 
						|
               CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
 | 
						|
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | 
						|
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
 | 
						|
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
               IINFO = 1
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            IF( IINFO.NE.0 ) THEN
 | 
						|
               WRITE( NOUNIT, FMT = 9992 )'Generator', IINFO, N, JTYPE,
 | 
						|
     $            IOLDSD
 | 
						|
               INFO = ABS( IINFO )
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
*
 | 
						|
   90       CONTINUE
 | 
						|
*
 | 
						|
*           Test for minimal and generous workspace
 | 
						|
*
 | 
						|
            DO 250 IWK = 1, 2
 | 
						|
               IF( IWK.EQ.1 ) THEN
 | 
						|
                  NNWORK = 3*N
 | 
						|
               ELSE
 | 
						|
                  NNWORK = 5*N + 2*N**2
 | 
						|
               END IF
 | 
						|
               NNWORK = MAX( NNWORK, 1 )
 | 
						|
*
 | 
						|
*              Initialize RESULT
 | 
						|
*
 | 
						|
               DO 100 J = 1, 13
 | 
						|
                  RESULT( J ) = -ONE
 | 
						|
  100          CONTINUE
 | 
						|
*
 | 
						|
*              Test with and without sorting of eigenvalues
 | 
						|
*
 | 
						|
               DO 210 ISORT = 0, 1
 | 
						|
                  IF( ISORT.EQ.0 ) THEN
 | 
						|
                     SORT = 'N'
 | 
						|
                     RSUB = 0
 | 
						|
                  ELSE
 | 
						|
                     SORT = 'S'
 | 
						|
                     RSUB = 6
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Compute Schur form and Schur vectors, and test them
 | 
						|
*
 | 
						|
                  CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
 | 
						|
                  CALL DGEES( 'V', SORT, DSLECT, N, H, LDA, SDIM, WR,
 | 
						|
     $                        WI, VS, LDVS, WORK, NNWORK, BWORK, IINFO )
 | 
						|
                  IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
 | 
						|
                     RESULT( 1+RSUB ) = ULPINV
 | 
						|
                     WRITE( NOUNIT, FMT = 9992 )'DGEES1', IINFO, N,
 | 
						|
     $                  JTYPE, IOLDSD
 | 
						|
                     INFO = ABS( IINFO )
 | 
						|
                     GO TO 220
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Do Test (1) or Test (7)
 | 
						|
*
 | 
						|
                  RESULT( 1+RSUB ) = ZERO
 | 
						|
                  DO 120 J = 1, N - 2
 | 
						|
                     DO 110 I = J + 2, N
 | 
						|
                        IF( H( I, J ).NE.ZERO )
 | 
						|
     $                     RESULT( 1+RSUB ) = ULPINV
 | 
						|
  110                CONTINUE
 | 
						|
  120             CONTINUE
 | 
						|
                  DO 130 I = 1, N - 2
 | 
						|
                     IF( H( I+1, I ).NE.ZERO .AND. H( I+2, I+1 ).NE.
 | 
						|
     $                   ZERO )RESULT( 1+RSUB ) = ULPINV
 | 
						|
  130             CONTINUE
 | 
						|
                  DO 140 I = 1, N - 1
 | 
						|
                     IF( H( I+1, I ).NE.ZERO ) THEN
 | 
						|
                        IF( H( I, I ).NE.H( I+1, I+1 ) .OR.
 | 
						|
     $                      H( I, I+1 ).EQ.ZERO .OR.
 | 
						|
     $                      SIGN( ONE, H( I+1, I ) ).EQ.
 | 
						|
     $                      SIGN( ONE, H( I, I+1 ) ) )RESULT( 1+RSUB )
 | 
						|
     $                      = ULPINV
 | 
						|
                     END IF
 | 
						|
  140             CONTINUE
 | 
						|
*
 | 
						|
*                 Do Tests (2) and (3) or Tests (8) and (9)
 | 
						|
*
 | 
						|
                  LWORK = MAX( 1, 2*N*N )
 | 
						|
                  CALL DHST01( N, 1, N, A, LDA, H, LDA, VS, LDVS, WORK,
 | 
						|
     $                         LWORK, RES )
 | 
						|
                  RESULT( 2+RSUB ) = RES( 1 )
 | 
						|
                  RESULT( 3+RSUB ) = RES( 2 )
 | 
						|
*
 | 
						|
*                 Do Test (4) or Test (10)
 | 
						|
*
 | 
						|
                  RESULT( 4+RSUB ) = ZERO
 | 
						|
                  DO 150 I = 1, N
 | 
						|
                     IF( H( I, I ).NE.WR( I ) )
 | 
						|
     $                  RESULT( 4+RSUB ) = ULPINV
 | 
						|
  150             CONTINUE
 | 
						|
                  IF( N.GT.1 ) THEN
 | 
						|
                     IF( H( 2, 1 ).EQ.ZERO .AND. WI( 1 ).NE.ZERO )
 | 
						|
     $                  RESULT( 4+RSUB ) = ULPINV
 | 
						|
                     IF( H( N, N-1 ).EQ.ZERO .AND. WI( N ).NE.ZERO )
 | 
						|
     $                  RESULT( 4+RSUB ) = ULPINV
 | 
						|
                  END IF
 | 
						|
                  DO 160 I = 1, N - 1
 | 
						|
                     IF( H( I+1, I ).NE.ZERO ) THEN
 | 
						|
                        TMP = SQRT( ABS( H( I+1, I ) ) )*
 | 
						|
     $                        SQRT( ABS( H( I, I+1 ) ) )
 | 
						|
                        RESULT( 4+RSUB ) = MAX( RESULT( 4+RSUB ),
 | 
						|
     $                                     ABS( WI( I )-TMP ) /
 | 
						|
     $                                     MAX( ULP*TMP, UNFL ) )
 | 
						|
                        RESULT( 4+RSUB ) = MAX( RESULT( 4+RSUB ),
 | 
						|
     $                                     ABS( WI( I+1 )+TMP ) /
 | 
						|
     $                                     MAX( ULP*TMP, UNFL ) )
 | 
						|
                     ELSE IF( I.GT.1 ) THEN
 | 
						|
                        IF( H( I+1, I ).EQ.ZERO .AND. H( I, I-1 ).EQ.
 | 
						|
     $                      ZERO .AND. WI( I ).NE.ZERO )RESULT( 4+RSUB )
 | 
						|
     $                       = ULPINV
 | 
						|
                     END IF
 | 
						|
  160             CONTINUE
 | 
						|
*
 | 
						|
*                 Do Test (5) or Test (11)
 | 
						|
*
 | 
						|
                  CALL DLACPY( 'F', N, N, A, LDA, HT, LDA )
 | 
						|
                  CALL DGEES( 'N', SORT, DSLECT, N, HT, LDA, SDIM, WRT,
 | 
						|
     $                        WIT, VS, LDVS, WORK, NNWORK, BWORK,
 | 
						|
     $                        IINFO )
 | 
						|
                  IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
 | 
						|
                     RESULT( 5+RSUB ) = ULPINV
 | 
						|
                     WRITE( NOUNIT, FMT = 9992 )'DGEES2', IINFO, N,
 | 
						|
     $                  JTYPE, IOLDSD
 | 
						|
                     INFO = ABS( IINFO )
 | 
						|
                     GO TO 220
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  RESULT( 5+RSUB ) = ZERO
 | 
						|
                  DO 180 J = 1, N
 | 
						|
                     DO 170 I = 1, N
 | 
						|
                        IF( H( I, J ).NE.HT( I, J ) )
 | 
						|
     $                     RESULT( 5+RSUB ) = ULPINV
 | 
						|
  170                CONTINUE
 | 
						|
  180             CONTINUE
 | 
						|
*
 | 
						|
*                 Do Test (6) or Test (12)
 | 
						|
*
 | 
						|
                  RESULT( 6+RSUB ) = ZERO
 | 
						|
                  DO 190 I = 1, N
 | 
						|
                     IF( WR( I ).NE.WRT( I ) .OR. WI( I ).NE.WIT( I ) )
 | 
						|
     $                  RESULT( 6+RSUB ) = ULPINV
 | 
						|
  190             CONTINUE
 | 
						|
*
 | 
						|
*                 Do Test (13)
 | 
						|
*
 | 
						|
                  IF( ISORT.EQ.1 ) THEN
 | 
						|
                     RESULT( 13 ) = ZERO
 | 
						|
                     KNTEIG = 0
 | 
						|
                     DO 200 I = 1, N
 | 
						|
                        IF( DSLECT( WR( I ), WI( I ) ) .OR.
 | 
						|
     $                      DSLECT( WR( I ), -WI( I ) ) )
 | 
						|
     $                      KNTEIG = KNTEIG + 1
 | 
						|
                        IF( I.LT.N ) THEN
 | 
						|
                           IF( ( DSLECT( WR( I+1 ),
 | 
						|
     $                         WI( I+1 ) ) .OR. DSLECT( WR( I+1 ),
 | 
						|
     $                         -WI( I+1 ) ) ) .AND.
 | 
						|
     $                         ( .NOT.( DSLECT( WR( I ),
 | 
						|
     $                         WI( I ) ) .OR. DSLECT( WR( I ),
 | 
						|
     $                         -WI( I ) ) ) ) .AND. IINFO.NE.N+2 )
 | 
						|
     $                         RESULT( 13 ) = ULPINV
 | 
						|
                        END IF
 | 
						|
  200                CONTINUE
 | 
						|
                     IF( SDIM.NE.KNTEIG ) THEN
 | 
						|
                        RESULT( 13 ) = ULPINV
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
  210          CONTINUE
 | 
						|
*
 | 
						|
*              End of Loop -- Check for RESULT(j) > THRESH
 | 
						|
*
 | 
						|
  220          CONTINUE
 | 
						|
*
 | 
						|
               NTEST = 0
 | 
						|
               NFAIL = 0
 | 
						|
               DO 230 J = 1, 13
 | 
						|
                  IF( RESULT( J ).GE.ZERO )
 | 
						|
     $               NTEST = NTEST + 1
 | 
						|
                  IF( RESULT( J ).GE.THRESH )
 | 
						|
     $               NFAIL = NFAIL + 1
 | 
						|
  230          CONTINUE
 | 
						|
*
 | 
						|
               IF( NFAIL.GT.0 )
 | 
						|
     $            NTESTF = NTESTF + 1
 | 
						|
               IF( NTESTF.EQ.1 ) THEN
 | 
						|
                  WRITE( NOUNIT, FMT = 9999 )PATH
 | 
						|
                  WRITE( NOUNIT, FMT = 9998 )
 | 
						|
                  WRITE( NOUNIT, FMT = 9997 )
 | 
						|
                  WRITE( NOUNIT, FMT = 9996 )
 | 
						|
                  WRITE( NOUNIT, FMT = 9995 )THRESH
 | 
						|
                  WRITE( NOUNIT, FMT = 9994 )
 | 
						|
                  NTESTF = 2
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               DO 240 J = 1, 13
 | 
						|
                  IF( RESULT( J ).GE.THRESH ) THEN
 | 
						|
                     WRITE( NOUNIT, FMT = 9993 )N, IWK, IOLDSD, JTYPE,
 | 
						|
     $                  J, RESULT( J )
 | 
						|
                  END IF
 | 
						|
  240          CONTINUE
 | 
						|
*
 | 
						|
               NERRS = NERRS + NFAIL
 | 
						|
               NTESTT = NTESTT + NTEST
 | 
						|
*
 | 
						|
  250       CONTINUE
 | 
						|
  260    CONTINUE
 | 
						|
  270 CONTINUE
 | 
						|
*
 | 
						|
*     Summary
 | 
						|
*
 | 
						|
      CALL DLASUM( PATH, NOUNIT, NERRS, NTESTT )
 | 
						|
*
 | 
						|
 9999 FORMAT( / 1X, A3, ' -- Real Schur Form Decomposition Driver',
 | 
						|
     $      / ' Matrix types (see DDRVES for details): ' )
 | 
						|
*
 | 
						|
 9998 FORMAT( / ' Special Matrices:', / '  1=Zero matrix.             ',
 | 
						|
     $      '           ', '  5=Diagonal: geometr. spaced entries.',
 | 
						|
     $      / '  2=Identity matrix.                    ', '  6=Diagona',
 | 
						|
     $      'l: clustered entries.', / '  3=Transposed Jordan block.  ',
 | 
						|
     $      '          ', '  7=Diagonal: large, evenly spaced.', / '  ',
 | 
						|
     $      '4=Diagonal: evenly spaced entries.    ', '  8=Diagonal: s',
 | 
						|
     $      'mall, evenly spaced.' )
 | 
						|
 9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / '  9=Well-cond., ev',
 | 
						|
     $      'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
 | 
						|
     $      'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
 | 
						|
     $      ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
 | 
						|
     $      'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
 | 
						|
     $      'lex ', / ' 12=Well-cond., random complex ', 6X, '   ',
 | 
						|
     $      ' 17=Ill-cond., large rand. complx ', / ' 13=Ill-condi',
 | 
						|
     $      'tioned, evenly spaced.     ', ' 18=Ill-cond., small rand.',
 | 
						|
     $      ' complx ' )
 | 
						|
 9996 FORMAT( ' 19=Matrix with random O(1) entries.    ', ' 21=Matrix ',
 | 
						|
     $      'with small random entries.', / ' 20=Matrix with large ran',
 | 
						|
     $      'dom entries.   ', / )
 | 
						|
 9995 FORMAT( ' Tests performed with test threshold =', F8.2,
 | 
						|
     $      / ' ( A denotes A on input and T denotes A on output)',
 | 
						|
     $      / / ' 1 = 0 if T in Schur form (no sort), ',
 | 
						|
     $      '  1/ulp otherwise', /
 | 
						|
     $      ' 2 = | A - VS T transpose(VS) | / ( n |A| ulp ) (no sort)',
 | 
						|
     $      / ' 3 = | I - VS transpose(VS) | / ( n ulp ) (no sort) ', /
 | 
						|
     $      ' 4 = 0 if WR+sqrt(-1)*WI are eigenvalues of T (no sort),',
 | 
						|
     $      '  1/ulp otherwise', /
 | 
						|
     $      ' 5 = 0 if T same no matter if VS computed (no sort),',
 | 
						|
     $      '  1/ulp otherwise', /
 | 
						|
     $      ' 6 = 0 if WR, WI same no matter if VS computed (no sort)',
 | 
						|
     $      ',  1/ulp otherwise' )
 | 
						|
 9994 FORMAT( ' 7 = 0 if T in Schur form (sort), ', '  1/ulp otherwise',
 | 
						|
     $      / ' 8 = | A - VS T transpose(VS) | / ( n |A| ulp ) (sort)',
 | 
						|
     $      / ' 9 = | I - VS transpose(VS) | / ( n ulp ) (sort) ',
 | 
						|
     $      / ' 10 = 0 if WR+sqrt(-1)*WI are eigenvalues of T (sort),',
 | 
						|
     $      '  1/ulp otherwise', /
 | 
						|
     $      ' 11 = 0 if T same no matter if VS computed (sort),',
 | 
						|
     $      '  1/ulp otherwise', /
 | 
						|
     $      ' 12 = 0 if WR, WI same no matter if VS computed (sort),',
 | 
						|
     $      '  1/ulp otherwise', /
 | 
						|
     $      ' 13 = 0 if sorting successful, 1/ulp otherwise', / )
 | 
						|
 9993 FORMAT( ' N=', I5, ', IWK=', I2, ', seed=', 4( I4, ',' ),
 | 
						|
     $      ' type ', I2, ', test(', I2, ')=', G10.3 )
 | 
						|
 9992 FORMAT( ' DDRVES: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
 | 
						|
     $      I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DDRVES
 | 
						|
*
 | 
						|
      END
 |