188 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			188 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DSTECT
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DSTECT( N, A, B, SHIFT, NUM )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            N, NUM
 | |
| *       DOUBLE PRECISION   SHIFT
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( * ), B( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    DSTECT counts the number NUM of eigenvalues of a tridiagonal
 | |
| *>    matrix T which are less than or equal to SHIFT. T has
 | |
| *>    diagonal entries A(1), ... , A(N), and offdiagonal entries
 | |
| *>    B(1), ..., B(N-1).
 | |
| *>    See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
 | |
| *>    Matrix", Report CS41, Computer Science Dept., Stanford
 | |
| *>    University, July 21, 1966
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The dimension of the tridiagonal matrix T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The diagonal entries of the tridiagonal matrix T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          The offdiagonal entries of the tridiagonal matrix T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SHIFT
 | |
| *> \verbatim
 | |
| *>          SHIFT is DOUBLE PRECISION
 | |
| *>          The shift, used as described under Purpose.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] NUM
 | |
| *> \verbatim
 | |
| *>          NUM is INTEGER
 | |
| *>          The number of eigenvalues of T less than or equal
 | |
| *>          to SHIFT.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup double_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DSTECT( N, A, B, SHIFT, NUM )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            N, NUM
 | |
|       DOUBLE PRECISION   SHIFT
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( * ), B( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE, THREE
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, THREE = 3.0D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I
 | |
|       DOUBLE PRECISION   M1, M2, MX, OVFL, SOV, SSHIFT, SSUN, SUN, TMP,
 | |
|      $                   TOM, U, UNFL
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           DLAMCH
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Get machine constants
 | |
| *
 | |
|       UNFL = DLAMCH( 'Safe minimum' )
 | |
|       OVFL = DLAMCH( 'Overflow' )
 | |
| *
 | |
| *     Find largest entry
 | |
| *
 | |
|       MX = ABS( A( 1 ) )
 | |
|       DO 10 I = 1, N - 1
 | |
|          MX = MAX( MX, ABS( A( I+1 ) ), ABS( B( I ) ) )
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Handle easy cases, including zero matrix
 | |
| *
 | |
|       IF( SHIFT.GE.THREE*MX ) THEN
 | |
|          NUM = N
 | |
|          RETURN
 | |
|       END IF
 | |
|       IF( SHIFT.LT.-THREE*MX ) THEN
 | |
|          NUM = 0
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Compute scale factors as in Kahan's report
 | |
| *     At this point, MX .NE. 0 so we can divide by it
 | |
| *
 | |
|       SUN = SQRT( UNFL )
 | |
|       SSUN = SQRT( SUN )
 | |
|       SOV = SQRT( OVFL )
 | |
|       TOM = SSUN*SOV
 | |
|       IF( MX.LE.ONE ) THEN
 | |
|          M1 = ONE / MX
 | |
|          M2 = TOM
 | |
|       ELSE
 | |
|          M1 = ONE
 | |
|          M2 = TOM / MX
 | |
|       END IF
 | |
| *
 | |
| *     Begin counting
 | |
| *
 | |
|       NUM = 0
 | |
|       SSHIFT = ( SHIFT*M1 )*M2
 | |
|       U = ( A( 1 )*M1 )*M2 - SSHIFT
 | |
|       IF( U.LE.SUN ) THEN
 | |
|          IF( U.LE.ZERO ) THEN
 | |
|             NUM = NUM + 1
 | |
|             IF( U.GT.-SUN )
 | |
|      $         U = -SUN
 | |
|          ELSE
 | |
|             U = SUN
 | |
|          END IF
 | |
|       END IF
 | |
|       DO 20 I = 2, N
 | |
|          TMP = ( B( I-1 )*M1 )*M2
 | |
|          U = ( ( A( I )*M1 )*M2-TMP*( TMP / U ) ) - SSHIFT
 | |
|          IF( U.LE.SUN ) THEN
 | |
|             IF( U.LE.ZERO ) THEN
 | |
|                NUM = NUM + 1
 | |
|                IF( U.GT.-SUN )
 | |
|      $            U = -SUN
 | |
|             ELSE
 | |
|                U = SUN
 | |
|             END IF
 | |
|          END IF
 | |
|    20 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of DSTECT
 | |
| *
 | |
|       END
 |