222 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			222 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZTRT01
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZTRT01( UPLO, DIAG, N, A, LDA, AINV, LDAINV, RCOND,
 | |
| *                          RWORK, RESID )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          DIAG, UPLO
 | |
| *       INTEGER            LDA, LDAINV, N
 | |
| *       DOUBLE PRECISION   RCOND, RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   RWORK( * )
 | |
| *       COMPLEX*16         A( LDA, * ), AINV( LDAINV, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZTRT01 computes the residual for a triangular matrix A times its
 | |
| *> inverse:
 | |
| *>    RESID = norm( A*AINV - I ) / ( N * norm(A) * norm(AINV) * EPS ),
 | |
| *> where EPS is the machine epsilon.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the matrix A is upper or lower triangular.
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIAG
 | |
| *> \verbatim
 | |
| *>          DIAG is CHARACTER*1
 | |
| *>          Specifies whether or not the matrix A is unit triangular.
 | |
| *>          = 'N':  Non-unit triangular
 | |
| *>          = 'U':  Unit triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          The triangular matrix A.  If UPLO = 'U', the leading n by n
 | |
| *>          upper triangular part of the array A contains the upper
 | |
| *>          triangular matrix, and the strictly lower triangular part of
 | |
| *>          A is not referenced.  If UPLO = 'L', the leading n by n lower
 | |
| *>          triangular part of the array A contains the lower triangular
 | |
| *>          matrix, and the strictly upper triangular part of A is not
 | |
| *>          referenced.  If DIAG = 'U', the diagonal elements of A are
 | |
| *>          also not referenced and are assumed to be 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AINV
 | |
| *> \verbatim
 | |
| *>          AINV is COMPLEX*16 array, dimension (LDAINV,N)
 | |
| *>          On entry, the (triangular) inverse of the matrix A, in the
 | |
| *>          same storage format as A.
 | |
| *>          On exit, the contents of AINV are destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAINV
 | |
| *> \verbatim
 | |
| *>          LDAINV is INTEGER
 | |
| *>          The leading dimension of the array AINV.  LDAINV >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is DOUBLE PRECISION
 | |
| *>          The reciprocal condition number of A, computed as
 | |
| *>          1/(norm(A) * norm(AINV)).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is DOUBLE PRECISION
 | |
| *>          norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complex16_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZTRT01( UPLO, DIAG, N, A, LDA, AINV, LDAINV, RCOND,
 | |
|      $                   RWORK, RESID )
 | |
| *
 | |
| *  -- LAPACK test routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          DIAG, UPLO
 | |
|       INTEGER            LDA, LDAINV, N
 | |
|       DOUBLE PRECISION   RCOND, RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   RWORK( * )
 | |
|       COMPLEX*16         A( LDA, * ), AINV( LDAINV, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            J
 | |
|       DOUBLE PRECISION   AINVNM, ANORM, EPS
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   DLAMCH, ZLANTR
 | |
|       EXTERNAL           LSAME, DLAMCH, ZLANTR
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZTRMV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if N = 0
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          RCOND = ONE
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       ANORM = ZLANTR( '1', UPLO, DIAG, N, N, A, LDA, RWORK )
 | |
|       AINVNM = ZLANTR( '1', UPLO, DIAG, N, N, AINV, LDAINV, RWORK )
 | |
|       IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | |
|          RCOND = ZERO
 | |
|          RESID = ONE / EPS
 | |
|          RETURN
 | |
|       END IF
 | |
|       RCOND = ( ONE / ANORM ) / AINVNM
 | |
| *
 | |
| *     Set the diagonal of AINV to 1 if AINV has unit diagonal.
 | |
| *
 | |
|       IF( LSAME( DIAG, 'U' ) ) THEN
 | |
|          DO 10 J = 1, N
 | |
|             AINV( J, J ) = ONE
 | |
|    10    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Compute A * AINV, overwriting AINV.
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|          DO 20 J = 1, N
 | |
|             CALL ZTRMV( 'Upper', 'No transpose', DIAG, J, A, LDA,
 | |
|      $                  AINV( 1, J ), 1 )
 | |
|    20    CONTINUE
 | |
|       ELSE
 | |
|          DO 30 J = 1, N
 | |
|             CALL ZTRMV( 'Lower', 'No transpose', DIAG, N-J+1, A( J, J ),
 | |
|      $                  LDA, AINV( J, J ), 1 )
 | |
|    30    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Subtract 1 from each diagonal element to form A*AINV - I.
 | |
| *
 | |
|       DO 40 J = 1, N
 | |
|          AINV( J, J ) = AINV( J, J ) - ONE
 | |
|    40 CONTINUE
 | |
| *
 | |
| *     Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS)
 | |
| *
 | |
|       RESID = ZLANTR( '1', UPLO, 'Non-unit', N, N, AINV, LDAINV, RWORK )
 | |
| *
 | |
|       RESID = ( ( RESID*RCOND ) / DBLE( N ) ) / EPS
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZTRT01
 | |
| *
 | |
|       END
 |