262 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZHET22
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZHET22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
 | |
| *                          V, LDV, TAU, WORK, RWORK, RESULT )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            ITYPE, KBAND, LDA, LDU, LDV, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   D( * ), E( * ), RESULT( 2 ), RWORK( * )
 | |
| *       COMPLEX*16         A( LDA, * ), TAU( * ), U( LDU, * ),
 | |
| *      $                   V( LDV, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>      ZHET22  generally checks a decomposition of the form
 | |
| *>
 | |
| *>              A U = U S
 | |
| *>
 | |
| *>      where A is complex Hermitian, the columns of U are orthonormal,
 | |
| *>      and S is diagonal (if KBAND=0) or symmetric tridiagonal (if
 | |
| *>      KBAND=1).  If ITYPE=1, then U is represented as a dense matrix,
 | |
| *>      otherwise the U is expressed as a product of Householder
 | |
| *>      transformations, whose vectors are stored in the array "V" and
 | |
| *>      whose scaling constants are in "TAU"; we shall use the letter
 | |
| *>      "V" to refer to the product of Householder transformations
 | |
| *>      (which should be equal to U).
 | |
| *>
 | |
| *>      Specifically, if ITYPE=1, then:
 | |
| *>
 | |
| *>              RESULT(1) = | U**H A U - S | / ( |A| m ulp ) and
 | |
| *>              RESULT(2) = | I - U**H U | / ( m ulp )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \verbatim
 | |
| *>  ITYPE   INTEGER
 | |
| *>          Specifies the type of tests to be performed.
 | |
| *>          1: U expressed as a dense orthogonal matrix:
 | |
| *>             RESULT(1) = | A - U S U**H | / ( |A| n ulp )   *and
 | |
| *>             RESULT(2) = | I - U U**H | / ( n ulp )
 | |
| *>
 | |
| *>  UPLO    CHARACTER
 | |
| *>          If UPLO='U', the upper triangle of A will be used and the
 | |
| *>          (strictly) lower triangle will not be referenced.  If
 | |
| *>          UPLO='L', the lower triangle of A will be used and the
 | |
| *>          (strictly) upper triangle will not be referenced.
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  N       INTEGER
 | |
| *>          The size of the matrix.  If it is zero, ZHET22 does nothing.
 | |
| *>          It must be at least zero.
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  M       INTEGER
 | |
| *>          The number of columns of U.  If it is zero, ZHET22 does
 | |
| *>          nothing.  It must be at least zero.
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  KBAND   INTEGER
 | |
| *>          The bandwidth of the matrix.  It may only be zero or one.
 | |
| *>          If zero, then S is diagonal, and E is not referenced.  If
 | |
| *>          one, then S is symmetric tri-diagonal.
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  A       COMPLEX*16 array, dimension (LDA , N)
 | |
| *>          The original (unfactored) matrix.  It is assumed to be
 | |
| *>          symmetric, and only the upper (UPLO='U') or only the lower
 | |
| *>          (UPLO='L') will be referenced.
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  LDA     INTEGER
 | |
| *>          The leading dimension of A.  It must be at least 1
 | |
| *>          and at least N.
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  D       DOUBLE PRECISION array, dimension (N)
 | |
| *>          The diagonal of the (symmetric tri-) diagonal matrix.
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  E       DOUBLE PRECISION array, dimension (N)
 | |
| *>          The off-diagonal of the (symmetric tri-) diagonal matrix.
 | |
| *>          E(1) is ignored, E(2) is the (1,2) and (2,1) element, etc.
 | |
| *>          Not referenced if KBAND=0.
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  U       COMPLEX*16 array, dimension (LDU, N)
 | |
| *>          If ITYPE=1, this contains the orthogonal matrix in
 | |
| *>          the decomposition, expressed as a dense matrix.
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  LDU     INTEGER
 | |
| *>          The leading dimension of U.  LDU must be at least N and
 | |
| *>          at least 1.
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  V       COMPLEX*16 array, dimension (LDV, N)
 | |
| *>          If ITYPE=2 or 3, the lower triangle of this array contains
 | |
| *>          the Householder vectors used to describe the orthogonal
 | |
| *>          matrix in the decomposition.  If ITYPE=1, then it is not
 | |
| *>          referenced.
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  LDV     INTEGER
 | |
| *>          The leading dimension of V.  LDV must be at least N and
 | |
| *>          at least 1.
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  TAU     COMPLEX*16 array, dimension (N)
 | |
| *>          If ITYPE >= 2, then TAU(j) is the scalar factor of
 | |
| *>          v(j) v(j)**H in the Householder transformation H(j) of
 | |
| *>          the product  U = H(1)...H(n-2)
 | |
| *>          If ITYPE < 2, then TAU is not referenced.
 | |
| *>          Not modified.
 | |
| *>
 | |
| *>  WORK    COMPLEX*16 array, dimension (2*N**2)
 | |
| *>          Workspace.
 | |
| *>          Modified.
 | |
| *>
 | |
| *>  RWORK   DOUBLE PRECISION array, dimension (N)
 | |
| *>          Workspace.
 | |
| *>          Modified.
 | |
| *>
 | |
| *>  RESULT  DOUBLE PRECISION array, dimension (2)
 | |
| *>          The values computed by the two tests described above.  The
 | |
| *>          values are currently limited to 1/ulp, to avoid overflow.
 | |
| *>          RESULT(1) is always modified.  RESULT(2) is modified only
 | |
| *>          if LDU is at least N.
 | |
| *>          Modified.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complex16_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZHET22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
 | |
|      $                   V, LDV, TAU, WORK, RWORK, RESULT )
 | |
| *
 | |
| *  -- LAPACK test routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            ITYPE, KBAND, LDA, LDU, LDV, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   D( * ), E( * ), RESULT( 2 ), RWORK( * )
 | |
|       COMPLEX*16         A( LDA, * ), TAU( * ), U( LDU, * ),
 | |
|      $                   V( LDV, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | |
|       COMPLEX*16         CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
 | |
|      $                   CONE = ( 1.0D0, 0.0D0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            J, JJ, JJ1, JJ2, NN, NNP1
 | |
|       DOUBLE PRECISION   ANORM, ULP, UNFL, WNORM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH, ZLANHE
 | |
|       EXTERNAL           DLAMCH, ZLANHE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZGEMM, ZHEMM, ZUNT01
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       RESULT( 1 ) = ZERO
 | |
|       RESULT( 2 ) = ZERO
 | |
|       IF( N.LE.0 .OR. M.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       UNFL = DLAMCH( 'Safe minimum' )
 | |
|       ULP = DLAMCH( 'Precision' )
 | |
| *
 | |
| *     Do Test 1
 | |
| *
 | |
| *     Norm of A:
 | |
| *
 | |
|       ANORM = MAX( ZLANHE( '1', UPLO, N, A, LDA, RWORK ), UNFL )
 | |
| *
 | |
| *     Compute error matrix:
 | |
| *
 | |
| *     ITYPE=1: error = U**H A U - S
 | |
| *
 | |
|       CALL ZHEMM( 'L', UPLO, N, M, CONE, A, LDA, U, LDU, CZERO, WORK,
 | |
|      $            N )
 | |
|       NN = N*N
 | |
|       NNP1 = NN + 1
 | |
|       CALL ZGEMM( 'C', 'N', M, M, N, CONE, U, LDU, WORK, N, CZERO,
 | |
|      $            WORK( NNP1 ), N )
 | |
|       DO 10 J = 1, M
 | |
|          JJ = NN + ( J-1 )*N + J
 | |
|          WORK( JJ ) = WORK( JJ ) - D( J )
 | |
|    10 CONTINUE
 | |
|       IF( KBAND.EQ.1 .AND. N.GT.1 ) THEN
 | |
|          DO 20 J = 2, M
 | |
|             JJ1 = NN + ( J-1 )*N + J - 1
 | |
|             JJ2 = NN + ( J-2 )*N + J
 | |
|             WORK( JJ1 ) = WORK( JJ1 ) - E( J-1 )
 | |
|             WORK( JJ2 ) = WORK( JJ2 ) - E( J-1 )
 | |
|    20    CONTINUE
 | |
|       END IF
 | |
|       WNORM = ZLANHE( '1', UPLO, M, WORK( NNP1 ), N, RWORK )
 | |
| *
 | |
|       IF( ANORM.GT.WNORM ) THEN
 | |
|          RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP )
 | |
|       ELSE
 | |
|          IF( ANORM.LT.ONE ) THEN
 | |
|             RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP )
 | |
|          ELSE
 | |
|             RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( M ) ) / ( M*ULP )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Do Test 2
 | |
| *
 | |
| *     Compute  U**H U - I
 | |
| *
 | |
|       IF( ITYPE.EQ.1 )
 | |
|      $   CALL ZUNT01( 'Columns', N, M, U, LDU, WORK, 2*N*N, RWORK,
 | |
|      $                RESULT( 2 ) )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZHET22
 | |
| *
 | |
|       END
 |