218 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			218 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SHST01
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SHST01( N, ILO, IHI, A, LDA, H, LDH, Q, LDQ, WORK,
 | |
| *                          LWORK, RESULT )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            IHI, ILO, LDA, LDH, LDQ, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), H( LDH, * ), Q( LDQ, * ),
 | |
| *      $                   RESULT( 2 ), WORK( LWORK )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SHST01 tests the reduction of a general matrix A to upper Hessenberg
 | |
| *> form:  A = Q*H*Q'.  Two test ratios are computed;
 | |
| *>
 | |
| *> RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
 | |
| *> RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )
 | |
| *>
 | |
| *> The matrix Q is assumed to be given explicitly as it would be
 | |
| *> following SGEHRD + SORGHR.
 | |
| *>
 | |
| *> In this version, ILO and IHI are not used and are assumed to be 1 and
 | |
| *> N, respectively.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ILO
 | |
| *> \verbatim
 | |
| *>          ILO is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IHI
 | |
| *> \verbatim
 | |
| *>          IHI is INTEGER
 | |
| *>
 | |
| *>          A is assumed to be upper triangular in rows and columns
 | |
| *>          1:ILO-1 and IHI+1:N, so Q differs from the identity only in
 | |
| *>          rows and columns ILO+1:IHI.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          The original n by n matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] H
 | |
| *> \verbatim
 | |
| *>          H is REAL array, dimension (LDH,N)
 | |
| *>          The upper Hessenberg matrix H from the reduction A = Q*H*Q'
 | |
| *>          as computed by SGEHRD.  H is assumed to be zero below the
 | |
| *>          first subdiagonal.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDH
 | |
| *> \verbatim
 | |
| *>          LDH is INTEGER
 | |
| *>          The leading dimension of the array H.  LDH >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Q
 | |
| *> \verbatim
 | |
| *>          Q is REAL array, dimension (LDQ,N)
 | |
| *>          The orthogonal matrix Q from the reduction A = Q*H*Q' as
 | |
| *>          computed by SGEHRD + SORGHR.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>          The leading dimension of the array Q.  LDQ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The length of the array WORK.  LWORK >= 2*N*N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is REAL array, dimension (2)
 | |
| *>          RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
 | |
| *>          RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup single_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SHST01( N, ILO, IHI, A, LDA, H, LDH, Q, LDQ, WORK,
 | |
|      $                   LWORK, RESULT )
 | |
| *
 | |
| *  -- LAPACK test routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            IHI, ILO, LDA, LDH, LDQ, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), H( LDH, * ), Q( LDQ, * ),
 | |
|      $                   RESULT( 2 ), WORK( LWORK )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            LDWORK
 | |
|       REAL               ANORM, EPS, OVFL, SMLNUM, UNFL, WNORM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH, SLANGE
 | |
|       EXTERNAL           SLAMCH, SLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGEMM, SLABAD, SLACPY, SORT01
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          RESULT( 1 ) = ZERO
 | |
|          RESULT( 2 ) = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       UNFL = SLAMCH( 'Safe minimum' )
 | |
|       EPS = SLAMCH( 'Precision' )
 | |
|       OVFL = ONE / UNFL
 | |
|       CALL SLABAD( UNFL, OVFL )
 | |
|       SMLNUM = UNFL*N / EPS
 | |
| *
 | |
| *     Test 1:  Compute norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
 | |
| *
 | |
| *     Copy A to WORK
 | |
| *
 | |
|       LDWORK = MAX( 1, N )
 | |
|       CALL SLACPY( ' ', N, N, A, LDA, WORK, LDWORK )
 | |
| *
 | |
| *     Compute Q*H
 | |
| *
 | |
|       CALL SGEMM( 'No transpose', 'No transpose', N, N, N, ONE, Q, LDQ,
 | |
|      $            H, LDH, ZERO, WORK( LDWORK*N+1 ), LDWORK )
 | |
| *
 | |
| *     Compute A - Q*H*Q'
 | |
| *
 | |
|       CALL SGEMM( 'No transpose', 'Transpose', N, N, N, -ONE,
 | |
|      $            WORK( LDWORK*N+1 ), LDWORK, Q, LDQ, ONE, WORK,
 | |
|      $            LDWORK )
 | |
| *
 | |
|       ANORM = MAX( SLANGE( '1', N, N, A, LDA, WORK( LDWORK*N+1 ) ),
 | |
|      $        UNFL )
 | |
|       WNORM = SLANGE( '1', N, N, WORK, LDWORK, WORK( LDWORK*N+1 ) )
 | |
| *
 | |
| *     Note that RESULT(1) cannot overflow and is bounded by 1/(N*EPS)
 | |
| *
 | |
|       RESULT( 1 ) = MIN( WNORM, ANORM ) / MAX( SMLNUM, ANORM*EPS ) / N
 | |
| *
 | |
| *     Test 2:  Compute norm( I - Q'*Q ) / ( N * EPS )
 | |
| *
 | |
|       CALL SORT01( 'Columns', N, N, Q, LDQ, WORK, LWORK, RESULT( 2 ) )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SHST01
 | |
| *
 | |
|       END
 |