252 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			252 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DBDT04
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DBDT04( UPLO, N, D, E, S, NS, U, LDU, VT, LDVT,
 | |
| *                          WORK, RESID )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            LDU, LDVT, N, NS
 | |
| *       DOUBLE PRECISION   RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   D( * ), E( * ), S( * ), U( LDU, * ),
 | |
| *      $                   VT( LDVT, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DBDT04 reconstructs a bidiagonal matrix B from its (partial) SVD:
 | |
| *>    S = U' * B * V
 | |
| *> where U and V are orthogonal matrices and S is diagonal.
 | |
| *>
 | |
| *> The test ratio to test the singular value decomposition is
 | |
| *>    RESID = norm( S - U' * B * V ) / ( n * norm(B) * EPS )
 | |
| *> where VT = V' and EPS is the machine precision.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the matrix B is upper or lower bidiagonal.
 | |
| *>          = 'U':  Upper bidiagonal
 | |
| *>          = 'L':  Lower bidiagonal
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The n diagonal elements of the bidiagonal matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          The (n-1) superdiagonal elements of the bidiagonal matrix B
 | |
| *>          if UPLO = 'U', or the (n-1) subdiagonal elements of B if
 | |
| *>          UPLO = 'L'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] S
 | |
| *> \verbatim
 | |
| *>          S is DOUBLE PRECISION array, dimension (NS)
 | |
| *>          The singular values from the (partial) SVD of B, sorted in
 | |
| *>          decreasing order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NS
 | |
| *> \verbatim
 | |
| *>          NS is INTEGER
 | |
| *>          The number of singular values/vectors from the (partial)
 | |
| *>          SVD of B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] U
 | |
| *> \verbatim
 | |
| *>          U is DOUBLE PRECISION array, dimension (LDU,NS)
 | |
| *>          The n by ns orthogonal matrix U in S = U' * B * V.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of the array U.  LDU >= max(1,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VT
 | |
| *> \verbatim
 | |
| *>          VT is DOUBLE PRECISION array, dimension (LDVT,N)
 | |
| *>          The n by ns orthogonal matrix V in S = U' * B * V.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVT
 | |
| *> \verbatim
 | |
| *>          LDVT is INTEGER
 | |
| *>          The leading dimension of the array VT.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (2*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is DOUBLE PRECISION
 | |
| *>          The test ratio:  norm(S - U' * B * V) / ( n * norm(B) * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup double_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DBDT04( UPLO, N, D, E, S, NS, U, LDU, VT, LDVT, WORK,
 | |
|      $                   RESID )
 | |
| *
 | |
| *  -- LAPACK test routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            LDU, LDVT, N, NS
 | |
|       DOUBLE PRECISION   RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   D( * ), E( * ), S( * ), U( LDU, * ),
 | |
|      $                   VT( LDVT, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| * ======================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J, K
 | |
|       DOUBLE PRECISION   BNORM, EPS
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            IDAMAX
 | |
|       DOUBLE PRECISION   DASUM, DLAMCH
 | |
|       EXTERNAL           LSAME, IDAMAX, DASUM, DLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DGEMM
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       RESID = ZERO
 | |
|       IF( N.LE.0 .OR. NS.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       EPS = DLAMCH( 'Precision' )
 | |
| *
 | |
| *     Compute S - U' * B * V.
 | |
| *
 | |
|       BNORM = ZERO
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
| *
 | |
| *        B is upper bidiagonal.
 | |
| *
 | |
|          K = 0
 | |
|          DO 20 I = 1, NS
 | |
|             DO 10 J = 1, N-1
 | |
|                K = K + 1
 | |
|                WORK( K ) = D( J )*VT( I, J ) + E( J )*VT( I, J+1 )
 | |
|    10       CONTINUE
 | |
|             K = K + 1
 | |
|             WORK( K ) = D( N )*VT( I, N )
 | |
|    20    CONTINUE
 | |
|          BNORM = ABS( D( 1 ) )
 | |
|          DO 30 I = 2, N
 | |
|             BNORM = MAX( BNORM, ABS( D( I ) )+ABS( E( I-1 ) ) )
 | |
|    30    CONTINUE
 | |
|       ELSE
 | |
| *
 | |
| *        B is lower bidiagonal.
 | |
| *
 | |
|          K = 0
 | |
|          DO 50 I = 1, NS
 | |
|             K = K + 1
 | |
|             WORK( K ) = D( 1 )*VT( I, 1 )
 | |
|             DO 40 J = 1, N-1
 | |
|                K = K + 1
 | |
|                WORK( K ) = E( J )*VT( I, J ) + D( J+1 )*VT( I, J+1 )
 | |
|    40       CONTINUE
 | |
|    50    CONTINUE
 | |
|          BNORM = ABS( D( N ) )
 | |
|          DO 60 I = 1, N-1
 | |
|             BNORM = MAX( BNORM, ABS( D( I ) )+ABS( E( I ) ) )
 | |
|    60    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       CALL DGEMM( 'T', 'N', NS, NS, N, -ONE, U, LDU, WORK( 1 ),
 | |
|      $            N, ZERO, WORK( 1+N*NS ), NS )
 | |
| *
 | |
| *     norm(S - U' * B * V)
 | |
| *
 | |
|       K = N*NS
 | |
|       DO 70 I = 1, NS
 | |
|          WORK( K+I ) =  WORK( K+I ) + S( I )
 | |
|          RESID = MAX( RESID, DASUM( NS, WORK( K+1 ), 1 ) )
 | |
|          K = K + NS
 | |
|    70 CONTINUE
 | |
| *
 | |
|       IF( BNORM.LE.ZERO ) THEN
 | |
|          IF( RESID.NE.ZERO )
 | |
|      $      RESID = ONE / EPS
 | |
|       ELSE
 | |
|          IF( BNORM.GE.RESID ) THEN
 | |
|             RESID = ( RESID / BNORM ) / ( DBLE( N )*EPS )
 | |
|          ELSE
 | |
|             IF( BNORM.LT.ONE ) THEN
 | |
|                RESID = ( MIN( RESID, DBLE( N )*BNORM ) / BNORM ) /
 | |
|      $                 ( DBLE( N )*EPS )
 | |
|             ELSE
 | |
|                RESID = MIN( RESID / BNORM, DBLE( N ) ) /
 | |
|      $                 ( DBLE( N )*EPS )
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DBDT04
 | |
| *
 | |
|       END
 |