420 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			420 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLA_GBAMV performs a matrix-vector operation to calculate error bounds.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CLA_GBAMV + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_gbamv.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_gbamv.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_gbamv.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X,
 | |
| *                             INCX, BETA, Y, INCY )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       REAL               ALPHA, BETA
 | |
| *       INTEGER            INCX, INCY, LDAB, M, N, KL, KU, TRANS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX            AB( LDAB, * ), X( * )
 | |
| *       REAL               Y( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CLA_GBAMV  performs one of the matrix-vector operations
 | |
| *>
 | |
| *>         y := alpha*abs(A)*abs(x) + beta*abs(y),
 | |
| *>    or   y := alpha*abs(A)**T*abs(x) + beta*abs(y),
 | |
| *>
 | |
| *> where alpha and beta are scalars, x and y are vectors and A is an
 | |
| *> m by n matrix.
 | |
| *>
 | |
| *> This function is primarily used in calculating error bounds.
 | |
| *> To protect against underflow during evaluation, components in
 | |
| *> the resulting vector are perturbed away from zero by (N+1)
 | |
| *> times the underflow threshold.  To prevent unnecessarily large
 | |
| *> errors for block-structure embedded in general matrices,
 | |
| *> "symbolically" zero components are not perturbed.  A zero
 | |
| *> entry is considered "symbolic" if all multiplications involved
 | |
| *> in computing that entry have at least one zero multiplicand.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is INTEGER
 | |
| *>           On entry, TRANS specifies the operation to be performed as
 | |
| *>           follows:
 | |
| *>
 | |
| *>             BLAS_NO_TRANS      y := alpha*abs(A)*abs(x) + beta*abs(y)
 | |
| *>             BLAS_TRANS         y := alpha*abs(A**T)*abs(x) + beta*abs(y)
 | |
| *>             BLAS_CONJ_TRANS    y := alpha*abs(A**T)*abs(x) + beta*abs(y)
 | |
| *>
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>           On entry, M specifies the number of rows of the matrix A.
 | |
| *>           M must be at least zero.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           On entry, N specifies the number of columns of the matrix A.
 | |
| *>           N must be at least zero.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KL
 | |
| *> \verbatim
 | |
| *>          KL is INTEGER
 | |
| *>           The number of subdiagonals within the band of A.  KL >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KU
 | |
| *> \verbatim
 | |
| *>          KU is INTEGER
 | |
| *>           The number of superdiagonals within the band of A.  KU >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is REAL
 | |
| *>           On entry, ALPHA specifies the scalar alpha.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AB
 | |
| *> \verbatim
 | |
| *>          AB is COMPLEX array, dimension (LDAB,n)
 | |
| *>           Before entry, the leading m by n part of the array AB must
 | |
| *>           contain the matrix of coefficients.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>           On entry, LDAB specifies the first dimension of AB as declared
 | |
| *>           in the calling (sub) program. LDAB must be at least
 | |
| *>           max( 1, m ).
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX array, dimension
 | |
| *>           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
 | |
| *>           and at least
 | |
| *>           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
 | |
| *>           Before entry, the incremented array X must contain the
 | |
| *>           vector x.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCX
 | |
| *> \verbatim
 | |
| *>          INCX is INTEGER
 | |
| *>           On entry, INCX specifies the increment for the elements of
 | |
| *>           X. INCX must not be zero.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is REAL
 | |
| *>           On entry, BETA specifies the scalar beta. When BETA is
 | |
| *>           supplied as zero then Y need not be set on input.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Y
 | |
| *> \verbatim
 | |
| *>          Y is REAL array, dimension
 | |
| *>           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
 | |
| *>           and at least
 | |
| *>           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
 | |
| *>           Before entry with BETA non-zero, the incremented array Y
 | |
| *>           must contain the vector y. On exit, Y is overwritten by the
 | |
| *>           updated vector y.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCY
 | |
| *> \verbatim
 | |
| *>          INCY is INTEGER
 | |
| *>           On entry, INCY specifies the increment for the elements of
 | |
| *>           Y. INCY must not be zero.
 | |
| *>           Unchanged on exit.
 | |
| *>
 | |
| *>  Level 2 Blas routine.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexGBcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X,
 | |
|      $                      INCX, BETA, Y, INCY )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       REAL               ALPHA, BETA
 | |
|       INTEGER            INCX, INCY, LDAB, M, N, KL, KU, TRANS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            AB( LDAB, * ), X( * )
 | |
|       REAL               Y( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            SYMB_ZERO
 | |
|       REAL               TEMP, SAFE1
 | |
|       INTEGER            I, INFO, IY, J, JX, KX, KY, LENX, LENY, KD, KE
 | |
|       COMPLEX            CDUM
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, SLAMCH
 | |
|       REAL               SLAMCH
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       EXTERNAL           ILATRANS
 | |
|       INTEGER            ILATRANS
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, ABS, REAL, AIMAG, SIGN
 | |
| *     ..
 | |
| *     .. Statement Functions
 | |
|       REAL               CABS1
 | |
| *     ..
 | |
| *     .. Statement Function Definitions ..
 | |
|       CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF     ( .NOT.( ( TRANS.EQ.ILATRANS( 'N' ) )
 | |
|      $           .OR. ( TRANS.EQ.ILATRANS( 'T' ) )
 | |
|      $           .OR. ( TRANS.EQ.ILATRANS( 'C' ) ) ) ) THEN
 | |
|          INFO = 1
 | |
|       ELSE IF( M.LT.0 )THEN
 | |
|          INFO = 2
 | |
|       ELSE IF( N.LT.0 )THEN
 | |
|          INFO = 3
 | |
|       ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN
 | |
|          INFO = 4
 | |
|       ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
 | |
|          INFO = 5
 | |
|       ELSE IF( LDAB.LT.KL+KU+1 )THEN
 | |
|          INFO = 6
 | |
|       ELSE IF( INCX.EQ.0 )THEN
 | |
|          INFO = 8
 | |
|       ELSE IF( INCY.EQ.0 )THEN
 | |
|          INFO = 11
 | |
|       END IF
 | |
|       IF( INFO.NE.0 )THEN
 | |
|          CALL XERBLA( 'CLA_GBAMV ', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
 | |
|      $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
 | |
| *     up the start points in  X  and  Y.
 | |
| *
 | |
|       IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
 | |
|          LENX = N
 | |
|          LENY = M
 | |
|       ELSE
 | |
|          LENX = M
 | |
|          LENY = N
 | |
|       END IF
 | |
|       IF( INCX.GT.0 )THEN
 | |
|          KX = 1
 | |
|       ELSE
 | |
|          KX = 1 - ( LENX - 1 )*INCX
 | |
|       END IF
 | |
|       IF( INCY.GT.0 )THEN
 | |
|          KY = 1
 | |
|       ELSE
 | |
|          KY = 1 - ( LENY - 1 )*INCY
 | |
|       END IF
 | |
| *
 | |
| *     Set SAFE1 essentially to be the underflow threshold times the
 | |
| *     number of additions in each row.
 | |
| *
 | |
|       SAFE1 = SLAMCH( 'Safe minimum' )
 | |
|       SAFE1 = (N+1)*SAFE1
 | |
| *
 | |
| *     Form  y := alpha*abs(A)*abs(x) + beta*abs(y).
 | |
| *
 | |
| *     The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to
 | |
| *     the inexact flag.  Still doesn't help change the iteration order
 | |
| *     to per-column.
 | |
| *
 | |
|       KD = KU + 1
 | |
|       KE = KL + 1
 | |
|       IY = KY
 | |
|       IF ( INCX.EQ.1 ) THEN
 | |
|          IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
 | |
|             DO I = 1, LENY
 | |
|                IF ( BETA .EQ. 0.0 ) THEN
 | |
|                   SYMB_ZERO = .TRUE.
 | |
|                   Y( IY ) = 0.0
 | |
|                ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
 | |
|                   SYMB_ZERO = .TRUE.
 | |
|                ELSE
 | |
|                   SYMB_ZERO = .FALSE.
 | |
|                   Y( IY ) = BETA * ABS( Y( IY ) )
 | |
|                END IF
 | |
|                IF ( ALPHA .NE. 0.0 ) THEN
 | |
|                   DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
 | |
|                      TEMP = CABS1( AB( KD+I-J, J ) )
 | |
|                      SYMB_ZERO = SYMB_ZERO .AND.
 | |
|      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
 | |
| 
 | |
|                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
 | |
|                   END DO
 | |
|                END IF
 | |
| 
 | |
|                IF ( .NOT.SYMB_ZERO)
 | |
|      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
 | |
| 
 | |
|                IY = IY + INCY
 | |
|             END DO
 | |
|          ELSE
 | |
|             DO I = 1, LENY
 | |
|                IF ( BETA .EQ. 0.0 ) THEN
 | |
|                   SYMB_ZERO = .TRUE.
 | |
|                   Y( IY ) = 0.0
 | |
|                ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
 | |
|                   SYMB_ZERO = .TRUE.
 | |
|                ELSE
 | |
|                   SYMB_ZERO = .FALSE.
 | |
|                   Y( IY ) = BETA * ABS( Y( IY ) )
 | |
|                END IF
 | |
|                IF ( ALPHA .NE. 0.0 ) THEN
 | |
|                   DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
 | |
|                      TEMP = CABS1( AB( KE-I+J, I ) )
 | |
|                      SYMB_ZERO = SYMB_ZERO .AND.
 | |
|      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
 | |
| 
 | |
|                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
 | |
|                   END DO
 | |
|                END IF
 | |
| 
 | |
|                IF ( .NOT.SYMB_ZERO)
 | |
|      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
 | |
| 
 | |
|                IY = IY + INCY
 | |
|             END DO
 | |
|          END IF
 | |
|       ELSE
 | |
|          IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
 | |
|             DO I = 1, LENY
 | |
|                IF ( BETA .EQ. 0.0 ) THEN
 | |
|                   SYMB_ZERO = .TRUE.
 | |
|                   Y( IY ) = 0.0
 | |
|                ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
 | |
|                   SYMB_ZERO = .TRUE.
 | |
|                ELSE
 | |
|                   SYMB_ZERO = .FALSE.
 | |
|                   Y( IY ) = BETA * ABS( Y( IY ) )
 | |
|                END IF
 | |
|                IF ( ALPHA .NE. 0.0 ) THEN
 | |
|                   JX = KX
 | |
|                   DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
 | |
|                      TEMP = CABS1( AB( KD+I-J, J ) )
 | |
|                      SYMB_ZERO = SYMB_ZERO .AND.
 | |
|      $                    ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
 | |
| 
 | |
|                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
 | |
|                      JX = JX + INCX
 | |
|                   END DO
 | |
|                END IF
 | |
| 
 | |
|                IF ( .NOT.SYMB_ZERO )
 | |
|      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
 | |
| 
 | |
|                IY = IY + INCY
 | |
|             END DO
 | |
|          ELSE
 | |
|             DO I = 1, LENY
 | |
|                IF ( BETA .EQ. 0.0 ) THEN
 | |
|                   SYMB_ZERO = .TRUE.
 | |
|                   Y( IY ) = 0.0
 | |
|                ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
 | |
|                   SYMB_ZERO = .TRUE.
 | |
|                ELSE
 | |
|                   SYMB_ZERO = .FALSE.
 | |
|                   Y( IY ) = BETA * ABS( Y( IY ) )
 | |
|                END IF
 | |
|                IF ( ALPHA .NE. 0.0 ) THEN
 | |
|                   JX = KX
 | |
|                   DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
 | |
|                      TEMP = CABS1( AB( KE-I+J, I ) )
 | |
|                      SYMB_ZERO = SYMB_ZERO .AND.
 | |
|      $                    ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
 | |
| 
 | |
|                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
 | |
|                      JX = JX + INCX
 | |
|                   END DO
 | |
|                END IF
 | |
| 
 | |
|                IF ( .NOT.SYMB_ZERO )
 | |
|      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
 | |
| 
 | |
|                IY = IY + INCY
 | |
|             END DO
 | |
|          END IF
 | |
| 
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLA_GBAMV
 | |
| *
 | |
|       END
 |