OpenBLAS/lapack-netlib/TESTING/MATGEN/zlatmt.c

1982 lines
58 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle_() continue;
#define myceiling_(w) {ceil(w)}
#define myhuge_(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#define F2C_proc_par_types 1
/* Table of constant values */
static doublecomplex c_b1 = {0.,0.};
static integer c__1 = 1;
static integer c__5 = 5;
static logical c_true = TRUE_;
static logical c_false = FALSE_;
/* > \brief \b ZLATMT */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* Definition: */
/* =========== */
/* SUBROUTINE ZLATMT( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, */
/* RANK, KL, KU, PACK, A, LDA, WORK, INFO ) */
/* DOUBLE PRECISION COND, DMAX */
/* INTEGER INFO, KL, KU, LDA, M, MODE, N, RANK */
/* CHARACTER DIST, PACK, SYM */
/* COMPLEX*16 A( LDA, * ), WORK( * ) */
/* DOUBLE PRECISION D( * ) */
/* INTEGER ISEED( 4 ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZLATMT generates random matrices with specified singular values */
/* > (or hermitian with specified eigenvalues) */
/* > for testing LAPACK programs. */
/* > */
/* > ZLATMT operates by applying the following sequence of */
/* > operations: */
/* > */
/* > Set the diagonal to D, where D may be input or */
/* > computed according to MODE, COND, DMAX, and SYM */
/* > as described below. */
/* > */
/* > Generate a matrix with the appropriate band structure, by one */
/* > of two methods: */
/* > */
/* > Method A: */
/* > Generate a dense M x N matrix by multiplying D on the left */
/* > and the right by random unitary matrices, then: */
/* > */
/* > Reduce the bandwidth according to KL and KU, using */
/* > Householder transformations. */
/* > */
/* > Method B: */
/* > Convert the bandwidth-0 (i.e., diagonal) matrix to a */
/* > bandwidth-1 matrix using Givens rotations, "chasing" */
/* > out-of-band elements back, much as in QR; then convert */
/* > the bandwidth-1 to a bandwidth-2 matrix, etc. Note */
/* > that for reasonably small bandwidths (relative to M and */
/* > N) this requires less storage, as a dense matrix is not */
/* > generated. Also, for hermitian or symmetric matrices, */
/* > only one triangle is generated. */
/* > */
/* > Method A is chosen if the bandwidth is a large fraction of the */
/* > order of the matrix, and LDA is at least M (so a dense */
/* > matrix can be stored.) Method B is chosen if the bandwidth */
/* > is small (< 1/2 N for hermitian or symmetric, < .3 N+M for */
/* > non-symmetric), or LDA is less than M and not less than the */
/* > bandwidth. */
/* > */
/* > Pack the matrix if desired. Options specified by PACK are: */
/* > no packing */
/* > zero out upper half (if hermitian) */
/* > zero out lower half (if hermitian) */
/* > store the upper half columnwise (if hermitian or upper */
/* > triangular) */
/* > store the lower half columnwise (if hermitian or lower */
/* > triangular) */
/* > store the lower triangle in banded format (if hermitian or */
/* > lower triangular) */
/* > store the upper triangle in banded format (if hermitian or */
/* > upper triangular) */
/* > store the entire matrix in banded format */
/* > If Method B is chosen, and band format is specified, then the */
/* > matrix will be generated in the band format, so no repacking */
/* > will be necessary. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of A. Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of A. N must equal M if the matrix */
/* > is symmetric or hermitian (i.e., if SYM is not 'N') */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] DIST */
/* > \verbatim */
/* > DIST is CHARACTER*1 */
/* > On entry, DIST specifies the type of distribution to be used */
/* > to generate the random eigen-/singular values. */
/* > 'U' => UNIFORM( 0, 1 ) ( 'U' for uniform ) */
/* > 'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric ) */
/* > 'N' => NORMAL( 0, 1 ) ( 'N' for normal ) */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in,out] ISEED */
/* > \verbatim */
/* > ISEED is INTEGER array, dimension ( 4 ) */
/* > On entry ISEED specifies the seed of the random number */
/* > generator. They should lie between 0 and 4095 inclusive, */
/* > and ISEED(4) should be odd. The random number generator */
/* > uses a linear congruential sequence limited to small */
/* > integers, and so should produce machine independent */
/* > random numbers. The values of ISEED are changed on */
/* > exit, and can be used in the next call to ZLATMT */
/* > to continue the same random number sequence. */
/* > Changed on exit. */
/* > \endverbatim */
/* > */
/* > \param[in] SYM */
/* > \verbatim */
/* > SYM is CHARACTER*1 */
/* > If SYM='H', the generated matrix is hermitian, with */
/* > eigenvalues specified by D, COND, MODE, and DMAX; they */
/* > may be positive, negative, or zero. */
/* > If SYM='P', the generated matrix is hermitian, with */
/* > eigenvalues (= singular values) specified by D, COND, */
/* > MODE, and DMAX; they will not be negative. */
/* > If SYM='N', the generated matrix is nonsymmetric, with */
/* > singular values specified by D, COND, MODE, and DMAX; */
/* > they will not be negative. */
/* > If SYM='S', the generated matrix is (complex) symmetric, */
/* > with singular values specified by D, COND, MODE, and */
/* > DMAX; they will not be negative. */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in,out] D */
/* > \verbatim */
/* > D is DOUBLE PRECISION array, dimension ( MIN( M, N ) ) */
/* > This array is used to specify the singular values or */
/* > eigenvalues of A (see SYM, above.) If MODE=0, then D is */
/* > assumed to contain the singular/eigenvalues, otherwise */
/* > they will be computed according to MODE, COND, and DMAX, */
/* > and placed in D. */
/* > Modified if MODE is nonzero. */
/* > \endverbatim */
/* > */
/* > \param[in] MODE */
/* > \verbatim */
/* > MODE is INTEGER */
/* > On entry this describes how the singular/eigenvalues are to */
/* > be specified: */
/* > MODE = 0 means use D as input */
/* > MODE = 1 sets D(1)=1 and D(2:RANK)=1.0/COND */
/* > MODE = 2 sets D(1:RANK-1)=1 and D(RANK)=1.0/COND */
/* > MODE = 3 sets D(I)=COND**(-(I-1)/(RANK-1)) */
/* > MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) */
/* > MODE = 5 sets D to random numbers in the range */
/* > ( 1/COND , 1 ) such that their logarithms */
/* > are uniformly distributed. */
/* > MODE = 6 set D to random numbers from same distribution */
/* > as the rest of the matrix. */
/* > MODE < 0 has the same meaning as ABS(MODE), except that */
/* > the order of the elements of D is reversed. */
/* > Thus if MODE is positive, D has entries ranging from */
/* > 1 to 1/COND, if negative, from 1/COND to 1, */
/* > If SYM='H', and MODE is neither 0, 6, nor -6, then */
/* > the elements of D will also be multiplied by a random */
/* > sign (i.e., +1 or -1.) */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] COND */
/* > \verbatim */
/* > COND is DOUBLE PRECISION */
/* > On entry, this is used as described under MODE above. */
/* > If used, it must be >= 1. Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] DMAX */
/* > \verbatim */
/* > DMAX is DOUBLE PRECISION */
/* > If MODE is neither -6, 0 nor 6, the contents of D, as */
/* > computed according to MODE and COND, will be scaled by */
/* > DMAX / f2cmax(abs(D(i))); thus, the maximum absolute eigen- or */
/* > singular value (which is to say the norm) will be abs(DMAX). */
/* > Note that DMAX need not be positive: if DMAX is negative */
/* > (or zero), D will be scaled by a negative number (or zero). */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] RANK */
/* > \verbatim */
/* > RANK is INTEGER */
/* > The rank of matrix to be generated for modes 1,2,3 only. */
/* > D( RANK+1:N ) = 0. */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] KL */
/* > \verbatim */
/* > KL is INTEGER */
/* > This specifies the lower bandwidth of the matrix. For */
/* > example, KL=0 implies upper triangular, KL=1 implies upper */
/* > Hessenberg, and KL being at least M-1 means that the matrix */
/* > has full lower bandwidth. KL must equal KU if the matrix */
/* > is symmetric or hermitian. */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] KU */
/* > \verbatim */
/* > KU is INTEGER */
/* > This specifies the upper bandwidth of the matrix. For */
/* > example, KU=0 implies lower triangular, KU=1 implies lower */
/* > Hessenberg, and KU being at least N-1 means that the matrix */
/* > has full upper bandwidth. KL must equal KU if the matrix */
/* > is symmetric or hermitian. */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] PACK */
/* > \verbatim */
/* > PACK is CHARACTER*1 */
/* > This specifies packing of matrix as follows: */
/* > 'N' => no packing */
/* > 'U' => zero out all subdiagonal entries (if symmetric */
/* > or hermitian) */
/* > 'L' => zero out all superdiagonal entries (if symmetric */
/* > or hermitian) */
/* > 'C' => store the upper triangle columnwise (only if the */
/* > matrix is symmetric, hermitian, or upper triangular) */
/* > 'R' => store the lower triangle columnwise (only if the */
/* > matrix is symmetric, hermitian, or lower triangular) */
/* > 'B' => store the lower triangle in band storage scheme */
/* > (only if the matrix is symmetric, hermitian, or */
/* > lower triangular) */
/* > 'Q' => store the upper triangle in band storage scheme */
/* > (only if the matrix is symmetric, hermitian, or */
/* > upper triangular) */
/* > 'Z' => store the entire matrix in band storage scheme */
/* > (pivoting can be provided for by using this */
/* > option to store A in the trailing rows of */
/* > the allocated storage) */
/* > */
/* > Using these options, the various LAPACK packed and banded */
/* > storage schemes can be obtained: */
/* > GB - use 'Z' */
/* > PB, SB, HB, or TB - use 'B' or 'Q' */
/* > PP, SP, HB, or TP - use 'C' or 'R' */
/* > */
/* > If two calls to ZLATMT differ only in the PACK parameter, */
/* > they will generate mathematically equivalent matrices. */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX*16 array, dimension ( LDA, N ) */
/* > On exit A is the desired test matrix. A is first generated */
/* > in full (unpacked) form, and then packed, if so specified */
/* > by PACK. Thus, the first M elements of the first N */
/* > columns will always be modified. If PACK specifies a */
/* > packed or banded storage scheme, all LDA elements of the */
/* > first N columns will be modified; the elements of the */
/* > array which do not correspond to elements of the generated */
/* > matrix are set to zero. */
/* > Modified. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > LDA specifies the first dimension of A as declared in the */
/* > calling program. If PACK='N', 'U', 'L', 'C', or 'R', then */
/* > LDA must be at least M. If PACK='B' or 'Q', then LDA must */
/* > be at least MIN( KL, M-1) (which is equal to MIN(KU,N-1)). */
/* > If PACK='Z', LDA must be large enough to hold the packed */
/* > array: MIN( KU, N-1) + MIN( KL, M-1) + 1. */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX*16 array, dimension ( 3*MAX( N, M ) ) */
/* > Workspace. */
/* > Modified. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > Error code. On exit, INFO will be set to one of the */
/* > following values: */
/* > 0 => normal return */
/* > -1 => M negative or unequal to N and SYM='S', 'H', or 'P' */
/* > -2 => N negative */
/* > -3 => DIST illegal string */
/* > -5 => SYM illegal string */
/* > -7 => MODE not in range -6 to 6 */
/* > -8 => COND less than 1.0, and MODE neither -6, 0 nor 6 */
/* > -10 => KL negative */
/* > -11 => KU negative, or SYM is not 'N' and KU is not equal to */
/* > KL */
/* > -12 => PACK illegal string, or PACK='U' or 'L', and SYM='N'; */
/* > or PACK='C' or 'Q' and SYM='N' and KL is not zero; */
/* > or PACK='R' or 'B' and SYM='N' and KU is not zero; */
/* > or PACK='U', 'L', 'C', 'R', 'B', or 'Q', and M is not */
/* > N. */
/* > -14 => LDA is less than M, or PACK='Z' and LDA is less than */
/* > MIN(KU,N-1) + MIN(KL,M-1) + 1. */
/* > 1 => Error return from DLATM7 */
/* > 2 => Cannot scale to DMAX (f2cmax. sing. value is 0) */
/* > 3 => Error return from ZLAGGE, ZLAGHE or ZLAGSY */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup complex16_matgen */
/* ===================================================================== */
/* Subroutine */ void zlatmt_(integer *m, integer *n, char *dist, integer *
iseed, char *sym, doublereal *d__, integer *mode, doublereal *cond,
doublereal *dmax__, integer *rank, integer *kl, integer *ku, char *
pack, doublecomplex *a, integer *lda, doublecomplex *work, integer *
info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
doublereal d__1, d__2, d__3;
doublecomplex z__1, z__2, z__3;
logical L__1;
/* Local variables */
integer ilda, icol;
doublereal temp;
logical csym;
integer irow, isym;
doublecomplex c__;
integer i__, j, k;
doublecomplex s;
doublereal alpha, angle, realc;
integer ipack, ioffg;
extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
integer *);
extern logical lsame_(char *, char *);
integer iinfo, idist, mnmin;
doublecomplex extra;
integer iskew;
doublecomplex dummy, ztemp;
extern /* Subroutine */ void dlatm7_(integer *, doublereal *, integer *,
integer *, integer *, doublereal *, integer *, integer *, integer
*);
integer ic, jc, nc, il;
doublecomplex ct;
integer iendch, ir, jr, ipackg, mr, minlda;
extern doublereal dlarnd_(integer *, integer *);
doublecomplex st;
extern /* Subroutine */ void zlagge_(integer *, integer *, integer *,
integer *, doublereal *, doublecomplex *, integer *, integer *,
doublecomplex *, integer *), zlaghe_(integer *, integer *,
doublereal *, doublecomplex *, integer *, integer *,
doublecomplex *, integer *);
extern int xerbla_(char *, integer *, ftnlen);
integer ioffst, irsign;
logical givens, iltemp;
//extern /* Double Complex */ VOID zlarnd_(doublecomplex *, integer *,
extern doublecomplex zlarnd_(integer *,
integer *);
extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlartg_(doublecomplex *, doublecomplex *, doublereal *,
doublecomplex *, doublecomplex *);
logical ilextr;
extern /* Subroutine */ void zlagsy_(integer *, integer *, doublereal *,
doublecomplex *, integer *, integer *, doublecomplex *, integer *)
;
integer ir1, ir2, isympk;
logical topdwn;
extern /* Subroutine */ void zlarot_(logical *, logical *, logical *,
integer *, doublecomplex *, doublecomplex *, doublecomplex *,
integer *, doublecomplex *, doublecomplex *);
integer jch, llb, jkl, jku, uub;
/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* 1) Decode and Test the input parameters. */
/* Initialize flags & seed. */
/* Parameter adjustments */
--iseed;
--d__;
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--work;
/* Function Body */
*info = 0;
/* Quick return if possible */
if (*m == 0 || *n == 0) {
return;
}
/* Decode DIST */
if (lsame_(dist, "U")) {
idist = 1;
} else if (lsame_(dist, "S")) {
idist = 2;
} else if (lsame_(dist, "N")) {
idist = 3;
} else {
idist = -1;
}
/* Decode SYM */
if (lsame_(sym, "N")) {
isym = 1;
irsign = 0;
csym = FALSE_;
} else if (lsame_(sym, "P")) {
isym = 2;
irsign = 0;
csym = FALSE_;
} else if (lsame_(sym, "S")) {
isym = 2;
irsign = 0;
csym = TRUE_;
} else if (lsame_(sym, "H")) {
isym = 2;
irsign = 1;
csym = FALSE_;
} else {
isym = -1;
}
/* Decode PACK */
isympk = 0;
if (lsame_(pack, "N")) {
ipack = 0;
} else if (lsame_(pack, "U")) {
ipack = 1;
isympk = 1;
} else if (lsame_(pack, "L")) {
ipack = 2;
isympk = 1;
} else if (lsame_(pack, "C")) {
ipack = 3;
isympk = 2;
} else if (lsame_(pack, "R")) {
ipack = 4;
isympk = 3;
} else if (lsame_(pack, "B")) {
ipack = 5;
isympk = 3;
} else if (lsame_(pack, "Q")) {
ipack = 6;
isympk = 2;
} else if (lsame_(pack, "Z")) {
ipack = 7;
} else {
ipack = -1;
}
/* Set certain internal parameters */
mnmin = f2cmin(*m,*n);
/* Computing MIN */
i__1 = *kl, i__2 = *m - 1;
llb = f2cmin(i__1,i__2);
/* Computing MIN */
i__1 = *ku, i__2 = *n - 1;
uub = f2cmin(i__1,i__2);
/* Computing MIN */
i__1 = *m, i__2 = *n + llb;
mr = f2cmin(i__1,i__2);
/* Computing MIN */
i__1 = *n, i__2 = *m + uub;
nc = f2cmin(i__1,i__2);
if (ipack == 5 || ipack == 6) {
minlda = uub + 1;
} else if (ipack == 7) {
minlda = llb + uub + 1;
} else {
minlda = *m;
}
/* Use Givens rotation method if bandwidth small enough, */
/* or if LDA is too small to store the matrix unpacked. */
givens = FALSE_;
if (isym == 1) {
/* Computing MAX */
i__1 = 1, i__2 = mr + nc;
if ((doublereal) (llb + uub) < (doublereal) f2cmax(i__1,i__2) * .3) {
givens = TRUE_;
}
} else {
if (llb << 1 < *m) {
givens = TRUE_;
}
}
if (*lda < *m && *lda >= minlda) {
givens = TRUE_;
}
/* Set INFO if an error */
if (*m < 0) {
*info = -1;
} else if (*m != *n && isym != 1) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (idist == -1) {
*info = -3;
} else if (isym == -1) {
*info = -5;
} else if (abs(*mode) > 6) {
*info = -7;
} else if (*mode != 0 && abs(*mode) != 6 && *cond < 1.) {
*info = -8;
} else if (*kl < 0) {
*info = -10;
} else if (*ku < 0 || isym != 1 && *kl != *ku) {
*info = -11;
} else if (ipack == -1 || isympk == 1 && isym == 1 || isympk == 2 && isym
== 1 && *kl > 0 || isympk == 3 && isym == 1 && *ku > 0 || isympk
!= 0 && *m != *n) {
*info = -12;
} else if (*lda < f2cmax(1,minlda)) {
*info = -14;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZLATMT", &i__1, 6);
return;
}
/* Initialize random number generator */
for (i__ = 1; i__ <= 4; ++i__) {
iseed[i__] = (i__1 = iseed[i__], abs(i__1)) % 4096;
/* L100: */
}
if (iseed[4] % 2 != 1) {
++iseed[4];
}
/* 2) Set up D if indicated. */
/* Compute D according to COND and MODE */
dlatm7_(mode, cond, &irsign, &idist, &iseed[1], &d__[1], &mnmin, rank, &
iinfo);
if (iinfo != 0) {
*info = 1;
return;
}
/* Choose Top-Down if D is (apparently) increasing, */
/* Bottom-Up if D is (apparently) decreasing. */
if (abs(d__[1]) <= (d__1 = d__[*rank], abs(d__1))) {
topdwn = TRUE_;
} else {
topdwn = FALSE_;
}
if (*mode != 0 && abs(*mode) != 6) {
/* Scale by DMAX */
temp = abs(d__[1]);
i__1 = *rank;
for (i__ = 2; i__ <= i__1; ++i__) {
/* Computing MAX */
d__2 = temp, d__3 = (d__1 = d__[i__], abs(d__1));
temp = f2cmax(d__2,d__3);
/* L110: */
}
if (temp > 0.) {
alpha = *dmax__ / temp;
} else {
*info = 2;
return;
}
dscal_(rank, &alpha, &d__[1], &c__1);
}
zlaset_("Full", lda, n, &c_b1, &c_b1, &a[a_offset], lda);
/* 3) Generate Banded Matrix using Givens rotations. */
/* Also the special case of UUB=LLB=0 */
/* Compute Addressing constants to cover all */
/* storage formats. Whether GE, HE, SY, GB, HB, or SB, */
/* upper or lower triangle or both, */
/* the (i,j)-th element is in */
/* A( i - ISKEW*j + IOFFST, j ) */
if (ipack > 4) {
ilda = *lda - 1;
iskew = 1;
if (ipack > 5) {
ioffst = uub + 1;
} else {
ioffst = 1;
}
} else {
ilda = *lda;
iskew = 0;
ioffst = 0;
}
/* IPACKG is the format that the matrix is generated in. If this is */
/* different from IPACK, then the matrix must be repacked at the */
/* end. It also signals how to compute the norm, for scaling. */
ipackg = 0;
/* Diagonal Matrix -- We are done, unless it */
/* is to be stored HP/SP/PP/TP (PACK='R' or 'C') */
if (llb == 0 && uub == 0) {
i__1 = mnmin;
for (j = 1; j <= i__1; ++j) {
i__2 = (1 - iskew) * j + ioffst + j * a_dim1;
i__3 = j;
z__1.r = d__[i__3], z__1.i = 0.;
a[i__2].r = z__1.r, a[i__2].i = z__1.i;
/* L120: */
}
if (ipack <= 2 || ipack >= 5) {
ipackg = ipack;
}
} else if (givens) {
/* Check whether to use Givens rotations, */
/* Householder transformations, or nothing. */
if (isym == 1) {
/* Non-symmetric -- A = U D V */
if (ipack > 4) {
ipackg = ipack;
} else {
ipackg = 0;
}
i__1 = mnmin;
for (j = 1; j <= i__1; ++j) {
i__2 = (1 - iskew) * j + ioffst + j * a_dim1;
i__3 = j;
z__1.r = d__[i__3], z__1.i = 0.;
a[i__2].r = z__1.r, a[i__2].i = z__1.i;
/* L130: */
}
if (topdwn) {
jkl = 0;
i__1 = uub;
for (jku = 1; jku <= i__1; ++jku) {
/* Transform from bandwidth JKL, JKU-1 to JKL, JKU */
/* Last row actually rotated is M */
/* Last column actually rotated is MIN( M+JKU, N ) */
/* Computing MIN */
i__3 = *m + jku;
i__2 = f2cmin(i__3,*n) + jkl - 1;
for (jr = 1; jr <= i__2; ++jr) {
extra.r = 0., extra.i = 0.;
angle = dlarnd_(&c__1, &iseed[1]) *
6.2831853071795864769252867663;
d__1 = cos(angle);
//zlarnd_(&z__2, &c__5, &iseed[1]);
z__2=zlarnd_(&c__5, &iseed[1]);
z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
c__.r = z__1.r, c__.i = z__1.i;
d__1 = sin(angle);
//zlarnd_(&z__2, &c__5, &iseed[1]);
z__2=zlarnd_( &c__5, &iseed[1]);
z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
s.r = z__1.r, s.i = z__1.i;
/* Computing MAX */
i__3 = 1, i__4 = jr - jkl;
icol = f2cmax(i__3,i__4);
if (jr < *m) {
/* Computing MIN */
i__3 = *n, i__4 = jr + jku;
il = f2cmin(i__3,i__4) + 1 - icol;
L__1 = jr > jkl;
zlarot_(&c_true, &L__1, &c_false, &il, &c__, &s, &
a[jr - iskew * icol + ioffst + icol *
a_dim1], &ilda, &extra, &dummy);
}
/* Chase "EXTRA" back up */
ir = jr;
ic = icol;
i__3 = -jkl - jku;
for (jch = jr - jkl; i__3 < 0 ? jch >= 1 : jch <= 1;
jch += i__3) {
if (ir < *m) {
zlartg_(&a[ir + 1 - iskew * (ic + 1) + ioffst
+ (ic + 1) * a_dim1], &extra, &realc,
&s, &dummy);
d__1 = dlarnd_(&c__5, &iseed[1]);
dummy.r = d__1, dummy.i = 0.;
z__2.r = realc * dummy.r, z__2.i = realc *
dummy.i;
d_cnjg(&z__1, &z__2);
c__.r = z__1.r, c__.i = z__1.i;
z__3.r = -s.r, z__3.i = -s.i;
z__2.r = z__3.r * dummy.r - z__3.i * dummy.i,
z__2.i = z__3.r * dummy.i + z__3.i *
dummy.r;
d_cnjg(&z__1, &z__2);
s.r = z__1.r, s.i = z__1.i;
}
/* Computing MAX */
i__4 = 1, i__5 = jch - jku;
irow = f2cmax(i__4,i__5);
il = ir + 2 - irow;
ztemp.r = 0., ztemp.i = 0.;
iltemp = jch > jku;
zlarot_(&c_false, &iltemp, &c_true, &il, &c__, &s,
&a[irow - iskew * ic + ioffst + ic *
a_dim1], &ilda, &ztemp, &extra);
if (iltemp) {
zlartg_(&a[irow + 1 - iskew * (ic + 1) +
ioffst + (ic + 1) * a_dim1], &ztemp, &
realc, &s, &dummy);
//zlarnd_(&z__1, &c__5, &iseed[1]);
z__1=zlarnd_( &c__5, &iseed[1]);
dummy.r = z__1.r, dummy.i = z__1.i;
z__2.r = realc * dummy.r, z__2.i = realc *
dummy.i;
d_cnjg(&z__1, &z__2);
c__.r = z__1.r, c__.i = z__1.i;
z__3.r = -s.r, z__3.i = -s.i;
z__2.r = z__3.r * dummy.r - z__3.i * dummy.i,
z__2.i = z__3.r * dummy.i + z__3.i *
dummy.r;
d_cnjg(&z__1, &z__2);
s.r = z__1.r, s.i = z__1.i;
/* Computing MAX */
i__4 = 1, i__5 = jch - jku - jkl;
icol = f2cmax(i__4,i__5);
il = ic + 2 - icol;
extra.r = 0., extra.i = 0.;
L__1 = jch > jku + jkl;
zlarot_(&c_true, &L__1, &c_true, &il, &c__, &
s, &a[irow - iskew * icol + ioffst +
icol * a_dim1], &ilda, &extra, &ztemp)
;
ic = icol;
ir = irow;
}
/* L140: */
}
/* L150: */
}
/* L160: */
}
jku = uub;
i__1 = llb;
for (jkl = 1; jkl <= i__1; ++jkl) {
/* Transform from bandwidth JKL-1, JKU to JKL, JKU */
/* Computing MIN */
i__3 = *n + jkl;
i__2 = f2cmin(i__3,*m) + jku - 1;
for (jc = 1; jc <= i__2; ++jc) {
extra.r = 0., extra.i = 0.;
angle = dlarnd_(&c__1, &iseed[1]) *
6.2831853071795864769252867663;
d__1 = cos(angle);
//zlarnd_(&z__2, &c__5, &iseed[1]);
z__2=zlarnd_(&c__5, &iseed[1]);
z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
c__.r = z__1.r, c__.i = z__1.i;
d__1 = sin(angle);
//zlarnd_(&z__2, &c__5, &iseed[1]);
z__2=zlarnd_(&c__5, &iseed[1]);
z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
s.r = z__1.r, s.i = z__1.i;
/* Computing MAX */
i__3 = 1, i__4 = jc - jku;
irow = f2cmax(i__3,i__4);
if (jc < *n) {
/* Computing MIN */
i__3 = *m, i__4 = jc + jkl;
il = f2cmin(i__3,i__4) + 1 - irow;
L__1 = jc > jku;
zlarot_(&c_false, &L__1, &c_false, &il, &c__, &s,
&a[irow - iskew * jc + ioffst + jc *
a_dim1], &ilda, &extra, &dummy);
}
/* Chase "EXTRA" back up */
ic = jc;
ir = irow;
i__3 = -jkl - jku;
for (jch = jc - jku; i__3 < 0 ? jch >= 1 : jch <= 1;
jch += i__3) {
if (ic < *n) {
zlartg_(&a[ir + 1 - iskew * (ic + 1) + ioffst
+ (ic + 1) * a_dim1], &extra, &realc,
&s, &dummy);
//zlarnd_(&z__1, &c__5, &iseed[1]);
z__1=zlarnd_(&c__5, &iseed[1]);
dummy.r = z__1.r, dummy.i = z__1.i;
z__2.r = realc * dummy.r, z__2.i = realc *
dummy.i;
d_cnjg(&z__1, &z__2);
c__.r = z__1.r, c__.i = z__1.i;
z__3.r = -s.r, z__3.i = -s.i;
z__2.r = z__3.r * dummy.r - z__3.i * dummy.i,
z__2.i = z__3.r * dummy.i + z__3.i *
dummy.r;
d_cnjg(&z__1, &z__2);
s.r = z__1.r, s.i = z__1.i;
}
/* Computing MAX */
i__4 = 1, i__5 = jch - jkl;
icol = f2cmax(i__4,i__5);
il = ic + 2 - icol;
ztemp.r = 0., ztemp.i = 0.;
iltemp = jch > jkl;
zlarot_(&c_true, &iltemp, &c_true, &il, &c__, &s,
&a[ir - iskew * icol + ioffst + icol *
a_dim1], &ilda, &ztemp, &extra);
if (iltemp) {
zlartg_(&a[ir + 1 - iskew * (icol + 1) +
ioffst + (icol + 1) * a_dim1], &ztemp,
&realc, &s, &dummy);
//zlarnd_(&z__1, &c__5, &iseed[1]);
z__1=zlarnd_(&c__5, &iseed[1]);
dummy.r = z__1.r, dummy.i = z__1.i;
z__2.r = realc * dummy.r, z__2.i = realc *
dummy.i;
d_cnjg(&z__1, &z__2);
c__.r = z__1.r, c__.i = z__1.i;
z__3.r = -s.r, z__3.i = -s.i;
z__2.r = z__3.r * dummy.r - z__3.i * dummy.i,
z__2.i = z__3.r * dummy.i + z__3.i *
dummy.r;
d_cnjg(&z__1, &z__2);
s.r = z__1.r, s.i = z__1.i;
/* Computing MAX */
i__4 = 1, i__5 = jch - jkl - jku;
irow = f2cmax(i__4,i__5);
il = ir + 2 - irow;
extra.r = 0., extra.i = 0.;
L__1 = jch > jkl + jku;
zlarot_(&c_false, &L__1, &c_true, &il, &c__, &
s, &a[irow - iskew * icol + ioffst +
icol * a_dim1], &ilda, &extra, &ztemp)
;
ic = icol;
ir = irow;
}
/* L170: */
}
/* L180: */
}
/* L190: */
}
} else {
/* Bottom-Up -- Start at the bottom right. */
jkl = 0;
i__1 = uub;
for (jku = 1; jku <= i__1; ++jku) {
/* Transform from bandwidth JKL, JKU-1 to JKL, JKU */
/* First row actually rotated is M */
/* First column actually rotated is MIN( M+JKU, N ) */
/* Computing MIN */
i__2 = *m, i__3 = *n + jkl;
iendch = f2cmin(i__2,i__3) - 1;
/* Computing MIN */
i__2 = *m + jku;
i__3 = 1 - jkl;
for (jc = f2cmin(i__2,*n) - 1; jc >= i__3; --jc) {
extra.r = 0., extra.i = 0.;
angle = dlarnd_(&c__1, &iseed[1]) *
6.2831853071795864769252867663;
d__1 = cos(angle);
//zlarnd_(&z__2, &c__5, &iseed[1]);
z__2=zlarnd_( &c__5, &iseed[1]);
z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
c__.r = z__1.r, c__.i = z__1.i;
d__1 = sin(angle);
//zlarnd_(&z__2, &c__5, &iseed[1]);
z__2=zlarnd_( &c__5, &iseed[1]);
z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
s.r = z__1.r, s.i = z__1.i;
/* Computing MAX */
i__2 = 1, i__4 = jc - jku + 1;
irow = f2cmax(i__2,i__4);
if (jc > 0) {
/* Computing MIN */
i__2 = *m, i__4 = jc + jkl + 1;
il = f2cmin(i__2,i__4) + 1 - irow;
L__1 = jc + jkl < *m;
zlarot_(&c_false, &c_false, &L__1, &il, &c__, &s,
&a[irow - iskew * jc + ioffst + jc *
a_dim1], &ilda, &dummy, &extra);
}
/* Chase "EXTRA" back down */
ic = jc;
i__2 = iendch;
i__4 = jkl + jku;
for (jch = jc + jkl; i__4 < 0 ? jch >= i__2 : jch <=
i__2; jch += i__4) {
ilextr = ic > 0;
if (ilextr) {
zlartg_(&a[jch - iskew * ic + ioffst + ic *
a_dim1], &extra, &realc, &s, &dummy);
//zlarnd_(&z__1, &c__5, &iseed[1]);
z__1=zlarnd_(&c__5, &iseed[1]);
dummy.r = z__1.r, dummy.i = z__1.i;
z__1.r = realc * dummy.r, z__1.i = realc *
dummy.i;
c__.r = z__1.r, c__.i = z__1.i;
z__1.r = s.r * dummy.r - s.i * dummy.i,
z__1.i = s.r * dummy.i + s.i *
dummy.r;
s.r = z__1.r, s.i = z__1.i;
}
ic = f2cmax(1,ic);
/* Computing MIN */
i__5 = *n - 1, i__6 = jch + jku;
icol = f2cmin(i__5,i__6);
iltemp = jch + jku < *n;
ztemp.r = 0., ztemp.i = 0.;
i__5 = icol + 2 - ic;
zlarot_(&c_true, &ilextr, &iltemp, &i__5, &c__, &
s, &a[jch - iskew * ic + ioffst + ic *
a_dim1], &ilda, &extra, &ztemp);
if (iltemp) {
zlartg_(&a[jch - iskew * icol + ioffst + icol
* a_dim1], &ztemp, &realc, &s, &dummy)
;
//zlarnd_(&z__1, &c__5, &iseed[1]);
z__1=zlarnd_(&c__5, &iseed[1]);
dummy.r = z__1.r, dummy.i = z__1.i;
z__1.r = realc * dummy.r, z__1.i = realc *
dummy.i;
c__.r = z__1.r, c__.i = z__1.i;
z__1.r = s.r * dummy.r - s.i * dummy.i,
z__1.i = s.r * dummy.i + s.i *
dummy.r;
s.r = z__1.r, s.i = z__1.i;
/* Computing MIN */
i__5 = iendch, i__6 = jch + jkl + jku;
il = f2cmin(i__5,i__6) + 2 - jch;
extra.r = 0., extra.i = 0.;
L__1 = jch + jkl + jku <= iendch;
zlarot_(&c_false, &c_true, &L__1, &il, &c__, &
s, &a[jch - iskew * icol + ioffst +
icol * a_dim1], &ilda, &ztemp, &extra)
;
ic = icol;
}
/* L200: */
}
/* L210: */
}
/* L220: */
}
jku = uub;
i__1 = llb;
for (jkl = 1; jkl <= i__1; ++jkl) {
/* Transform from bandwidth JKL-1, JKU to JKL, JKU */
/* First row actually rotated is MIN( N+JKL, M ) */
/* First column actually rotated is N */
/* Computing MIN */
i__3 = *n, i__4 = *m + jku;
iendch = f2cmin(i__3,i__4) - 1;
/* Computing MIN */
i__3 = *n + jkl;
i__4 = 1 - jku;
for (jr = f2cmin(i__3,*m) - 1; jr >= i__4; --jr) {
extra.r = 0., extra.i = 0.;
angle = dlarnd_(&c__1, &iseed[1]) *
6.2831853071795864769252867663;
d__1 = cos(angle);
//zlarnd_(&z__2, &c__5, &iseed[1]);
z__2=zlarnd_(&c__5, &iseed[1]);
z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
c__.r = z__1.r, c__.i = z__1.i;
d__1 = sin(angle);
//zlarnd_(&z__2, &c__5, &iseed[1]);
z__2=zlarnd_(&c__5, &iseed[1]);
z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
s.r = z__1.r, s.i = z__1.i;
/* Computing MAX */
i__3 = 1, i__2 = jr - jkl + 1;
icol = f2cmax(i__3,i__2);
if (jr > 0) {
/* Computing MIN */
i__3 = *n, i__2 = jr + jku + 1;
il = f2cmin(i__3,i__2) + 1 - icol;
L__1 = jr + jku < *n;
zlarot_(&c_true, &c_false, &L__1, &il, &c__, &s, &
a[jr - iskew * icol + ioffst + icol *
a_dim1], &ilda, &dummy, &extra);
}
/* Chase "EXTRA" back down */
ir = jr;
i__3 = iendch;
i__2 = jkl + jku;
for (jch = jr + jku; i__2 < 0 ? jch >= i__3 : jch <=
i__3; jch += i__2) {
ilextr = ir > 0;
if (ilextr) {
zlartg_(&a[ir - iskew * jch + ioffst + jch *
a_dim1], &extra, &realc, &s, &dummy);
//zlarnd_(&z__1, &c__5, &iseed[1]);
z__1=zlarnd_( &c__5, &iseed[1]);
dummy.r = z__1.r, dummy.i = z__1.i;
z__1.r = realc * dummy.r, z__1.i = realc *
dummy.i;
c__.r = z__1.r, c__.i = z__1.i;
z__1.r = s.r * dummy.r - s.i * dummy.i,
z__1.i = s.r * dummy.i + s.i *
dummy.r;
s.r = z__1.r, s.i = z__1.i;
}
ir = f2cmax(1,ir);
/* Computing MIN */
i__5 = *m - 1, i__6 = jch + jkl;
irow = f2cmin(i__5,i__6);
iltemp = jch + jkl < *m;
ztemp.r = 0., ztemp.i = 0.;
i__5 = irow + 2 - ir;
zlarot_(&c_false, &ilextr, &iltemp, &i__5, &c__, &
s, &a[ir - iskew * jch + ioffst + jch *
a_dim1], &ilda, &extra, &ztemp);
if (iltemp) {
zlartg_(&a[irow - iskew * jch + ioffst + jch *
a_dim1], &ztemp, &realc, &s, &dummy);
//zlarnd_(&z__1, &c__5, &iseed[1]);
z__1=zlarnd_(&c__5, &iseed[1]);
dummy.r = z__1.r, dummy.i = z__1.i;
z__1.r = realc * dummy.r, z__1.i = realc *
dummy.i;
c__.r = z__1.r, c__.i = z__1.i;
z__1.r = s.r * dummy.r - s.i * dummy.i,
z__1.i = s.r * dummy.i + s.i *
dummy.r;
s.r = z__1.r, s.i = z__1.i;
/* Computing MIN */
i__5 = iendch, i__6 = jch + jkl + jku;
il = f2cmin(i__5,i__6) + 2 - jch;
extra.r = 0., extra.i = 0.;
L__1 = jch + jkl + jku <= iendch;
zlarot_(&c_true, &c_true, &L__1, &il, &c__, &
s, &a[irow - iskew * jch + ioffst +
jch * a_dim1], &ilda, &ztemp, &extra);
ir = irow;
}
/* L230: */
}
/* L240: */
}
/* L250: */
}
}
} else {
/* Symmetric -- A = U D U' */
/* Hermitian -- A = U D U* */
ipackg = ipack;
ioffg = ioffst;
if (topdwn) {
/* Top-Down -- Generate Upper triangle only */
if (ipack >= 5) {
ipackg = 6;
ioffg = uub + 1;
} else {
ipackg = 1;
}
i__1 = mnmin;
for (j = 1; j <= i__1; ++j) {
i__4 = (1 - iskew) * j + ioffg + j * a_dim1;
i__2 = j;
z__1.r = d__[i__2], z__1.i = 0.;
a[i__4].r = z__1.r, a[i__4].i = z__1.i;
/* L260: */
}
i__1 = uub;
for (k = 1; k <= i__1; ++k) {
i__4 = *n - 1;
for (jc = 1; jc <= i__4; ++jc) {
/* Computing MAX */
i__2 = 1, i__3 = jc - k;
irow = f2cmax(i__2,i__3);
/* Computing MIN */
i__2 = jc + 1, i__3 = k + 2;
il = f2cmin(i__2,i__3);
extra.r = 0., extra.i = 0.;
i__2 = jc - iskew * (jc + 1) + ioffg + (jc + 1) *
a_dim1;
ztemp.r = a[i__2].r, ztemp.i = a[i__2].i;
angle = dlarnd_(&c__1, &iseed[1]) *
6.2831853071795864769252867663;
d__1 = cos(angle);
//zlarnd_(&z__2, &c__5, &iseed[1]);
z__2=zlarnd_(&c__5, &iseed[1]);
z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
c__.r = z__1.r, c__.i = z__1.i;
d__1 = sin(angle);
//zlarnd_(&z__2, &c__5, &iseed[1]);
z__2=zlarnd_( &c__5, &iseed[1]);
z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
s.r = z__1.r, s.i = z__1.i;
if (csym) {
ct.r = c__.r, ct.i = c__.i;
st.r = s.r, st.i = s.i;
} else {
d_cnjg(&z__1, &ztemp);
ztemp.r = z__1.r, ztemp.i = z__1.i;
d_cnjg(&z__1, &c__);
ct.r = z__1.r, ct.i = z__1.i;
d_cnjg(&z__1, &s);
st.r = z__1.r, st.i = z__1.i;
}
L__1 = jc > k;
zlarot_(&c_false, &L__1, &c_true, &il, &c__, &s, &a[
irow - iskew * jc + ioffg + jc * a_dim1], &
ilda, &extra, &ztemp);
/* Computing MIN */
i__3 = k, i__5 = *n - jc;
i__2 = f2cmin(i__3,i__5) + 1;
zlarot_(&c_true, &c_true, &c_false, &i__2, &ct, &st, &
a[(1 - iskew) * jc + ioffg + jc * a_dim1], &
ilda, &ztemp, &dummy);
/* Chase EXTRA back up the matrix */
icol = jc;
i__2 = -k;
for (jch = jc - k; i__2 < 0 ? jch >= 1 : jch <= 1;
jch += i__2) {
zlartg_(&a[jch + 1 - iskew * (icol + 1) + ioffg +
(icol + 1) * a_dim1], &extra, &realc, &s,
&dummy);
//zlarnd_(&z__1, &c__5, &iseed[1]);
z__1=zlarnd_(&c__5, &iseed[1]);
dummy.r = z__1.r, dummy.i = z__1.i;
z__2.r = realc * dummy.r, z__2.i = realc *
dummy.i;
d_cnjg(&z__1, &z__2);
c__.r = z__1.r, c__.i = z__1.i;
z__3.r = -s.r, z__3.i = -s.i;
z__2.r = z__3.r * dummy.r - z__3.i * dummy.i,
z__2.i = z__3.r * dummy.i + z__3.i *
dummy.r;
d_cnjg(&z__1, &z__2);
s.r = z__1.r, s.i = z__1.i;
i__3 = jch - iskew * (jch + 1) + ioffg + (jch + 1)
* a_dim1;
ztemp.r = a[i__3].r, ztemp.i = a[i__3].i;
if (csym) {
ct.r = c__.r, ct.i = c__.i;
st.r = s.r, st.i = s.i;
} else {
d_cnjg(&z__1, &ztemp);
ztemp.r = z__1.r, ztemp.i = z__1.i;
d_cnjg(&z__1, &c__);
ct.r = z__1.r, ct.i = z__1.i;
d_cnjg(&z__1, &s);
st.r = z__1.r, st.i = z__1.i;
}
i__3 = k + 2;
zlarot_(&c_true, &c_true, &c_true, &i__3, &c__, &
s, &a[(1 - iskew) * jch + ioffg + jch *
a_dim1], &ilda, &ztemp, &extra);
/* Computing MAX */
i__3 = 1, i__5 = jch - k;
irow = f2cmax(i__3,i__5);
/* Computing MIN */
i__3 = jch + 1, i__5 = k + 2;
il = f2cmin(i__3,i__5);
extra.r = 0., extra.i = 0.;
L__1 = jch > k;
zlarot_(&c_false, &L__1, &c_true, &il, &ct, &st, &
a[irow - iskew * jch + ioffg + jch *
a_dim1], &ilda, &extra, &ztemp);
icol = jch;
/* L270: */
}
/* L280: */
}
/* L290: */
}
/* If we need lower triangle, copy from upper. Note that */
/* the order of copying is chosen to work for 'q' -> 'b' */
if (ipack != ipackg && ipack != 3) {
i__1 = *n;
for (jc = 1; jc <= i__1; ++jc) {
irow = ioffst - iskew * jc;
if (csym) {
/* Computing MIN */
i__2 = *n, i__3 = jc + uub;
i__4 = f2cmin(i__2,i__3);
for (jr = jc; jr <= i__4; ++jr) {
i__2 = jr + irow + jc * a_dim1;
i__3 = jc - iskew * jr + ioffg + jr * a_dim1;
a[i__2].r = a[i__3].r, a[i__2].i = a[i__3].i;
/* L300: */
}
} else {
/* Computing MIN */
i__2 = *n, i__3 = jc + uub;
i__4 = f2cmin(i__2,i__3);
for (jr = jc; jr <= i__4; ++jr) {
i__2 = jr + irow + jc * a_dim1;
d_cnjg(&z__1, &a[jc - iskew * jr + ioffg + jr
* a_dim1]);
a[i__2].r = z__1.r, a[i__2].i = z__1.i;
/* L310: */
}
}
/* L320: */
}
if (ipack == 5) {
i__1 = *n;
for (jc = *n - uub + 1; jc <= i__1; ++jc) {
i__4 = uub + 1;
for (jr = *n + 2 - jc; jr <= i__4; ++jr) {
i__2 = jr + jc * a_dim1;
a[i__2].r = 0., a[i__2].i = 0.;
/* L330: */
}
/* L340: */
}
}
if (ipackg == 6) {
ipackg = ipack;
} else {
ipackg = 0;
}
}
} else {
/* Bottom-Up -- Generate Lower triangle only */
if (ipack >= 5) {
ipackg = 5;
if (ipack == 6) {
ioffg = 1;
}
} else {
ipackg = 2;
}
i__1 = mnmin;
for (j = 1; j <= i__1; ++j) {
i__4 = (1 - iskew) * j + ioffg + j * a_dim1;
i__2 = j;
z__1.r = d__[i__2], z__1.i = 0.;
a[i__4].r = z__1.r, a[i__4].i = z__1.i;
/* L350: */
}
i__1 = uub;
for (k = 1; k <= i__1; ++k) {
for (jc = *n - 1; jc >= 1; --jc) {
/* Computing MIN */
i__4 = *n + 1 - jc, i__2 = k + 2;
il = f2cmin(i__4,i__2);
extra.r = 0., extra.i = 0.;
i__4 = (1 - iskew) * jc + 1 + ioffg + jc * a_dim1;
ztemp.r = a[i__4].r, ztemp.i = a[i__4].i;
angle = dlarnd_(&c__1, &iseed[1]) *
6.2831853071795864769252867663;
d__1 = cos(angle);
//zlarnd_(&z__2, &c__5, &iseed[1]);
z__2=zlarnd_(&c__5, &iseed[1]);
z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
c__.r = z__1.r, c__.i = z__1.i;
d__1 = sin(angle);
//zlarnd_(&z__2, &c__5, &iseed[1]);
z__2=zlarnd_(&c__5, &iseed[1]);
z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
s.r = z__1.r, s.i = z__1.i;
if (csym) {
ct.r = c__.r, ct.i = c__.i;
st.r = s.r, st.i = s.i;
} else {
d_cnjg(&z__1, &ztemp);
ztemp.r = z__1.r, ztemp.i = z__1.i;
d_cnjg(&z__1, &c__);
ct.r = z__1.r, ct.i = z__1.i;
d_cnjg(&z__1, &s);
st.r = z__1.r, st.i = z__1.i;
}
L__1 = *n - jc > k;
zlarot_(&c_false, &c_true, &L__1, &il, &c__, &s, &a[(
1 - iskew) * jc + ioffg + jc * a_dim1], &ilda,
&ztemp, &extra);
/* Computing MAX */
i__4 = 1, i__2 = jc - k + 1;
icol = f2cmax(i__4,i__2);
i__4 = jc + 2 - icol;
zlarot_(&c_true, &c_false, &c_true, &i__4, &ct, &st, &
a[jc - iskew * icol + ioffg + icol * a_dim1],
&ilda, &dummy, &ztemp);
/* Chase EXTRA back down the matrix */
icol = jc;
i__4 = *n - 1;
i__2 = k;
for (jch = jc + k; i__2 < 0 ? jch >= i__4 : jch <=
i__4; jch += i__2) {
zlartg_(&a[jch - iskew * icol + ioffg + icol *
a_dim1], &extra, &realc, &s, &dummy);
//zlarnd_(&z__1, &c__5, &iseed[1]);
z__1=zlarnd_(&c__5, &iseed[1]);
dummy.r = z__1.r, dummy.i = z__1.i;
z__1.r = realc * dummy.r, z__1.i = realc *
dummy.i;
c__.r = z__1.r, c__.i = z__1.i;
z__1.r = s.r * dummy.r - s.i * dummy.i, z__1.i =
s.r * dummy.i + s.i * dummy.r;
s.r = z__1.r, s.i = z__1.i;
i__3 = (1 - iskew) * jch + 1 + ioffg + jch *
a_dim1;
ztemp.r = a[i__3].r, ztemp.i = a[i__3].i;
if (csym) {
ct.r = c__.r, ct.i = c__.i;
st.r = s.r, st.i = s.i;
} else {
d_cnjg(&z__1, &ztemp);
ztemp.r = z__1.r, ztemp.i = z__1.i;
d_cnjg(&z__1, &c__);
ct.r = z__1.r, ct.i = z__1.i;
d_cnjg(&z__1, &s);
st.r = z__1.r, st.i = z__1.i;
}
i__3 = k + 2;
zlarot_(&c_true, &c_true, &c_true, &i__3, &c__, &
s, &a[jch - iskew * icol + ioffg + icol *
a_dim1], &ilda, &extra, &ztemp);
/* Computing MIN */
i__3 = *n + 1 - jch, i__5 = k + 2;
il = f2cmin(i__3,i__5);
extra.r = 0., extra.i = 0.;
L__1 = *n - jch > k;
zlarot_(&c_false, &c_true, &L__1, &il, &ct, &st, &
a[(1 - iskew) * jch + ioffg + jch *
a_dim1], &ilda, &ztemp, &extra);
icol = jch;
/* L360: */
}
/* L370: */
}
/* L380: */
}
/* If we need upper triangle, copy from lower. Note that */
/* the order of copying is chosen to work for 'b' -> 'q' */
if (ipack != ipackg && ipack != 4) {
for (jc = *n; jc >= 1; --jc) {
irow = ioffst - iskew * jc;
if (csym) {
/* Computing MAX */
i__2 = 1, i__4 = jc - uub;
i__1 = f2cmax(i__2,i__4);
for (jr = jc; jr >= i__1; --jr) {
i__2 = jr + irow + jc * a_dim1;
i__4 = jc - iskew * jr + ioffg + jr * a_dim1;
a[i__2].r = a[i__4].r, a[i__2].i = a[i__4].i;
/* L390: */
}
} else {
/* Computing MAX */
i__2 = 1, i__4 = jc - uub;
i__1 = f2cmax(i__2,i__4);
for (jr = jc; jr >= i__1; --jr) {
i__2 = jr + irow + jc * a_dim1;
d_cnjg(&z__1, &a[jc - iskew * jr + ioffg + jr
* a_dim1]);
a[i__2].r = z__1.r, a[i__2].i = z__1.i;
/* L400: */
}
}
/* L410: */
}
if (ipack == 6) {
i__1 = uub;
for (jc = 1; jc <= i__1; ++jc) {
i__2 = uub + 1 - jc;
for (jr = 1; jr <= i__2; ++jr) {
i__4 = jr + jc * a_dim1;
a[i__4].r = 0., a[i__4].i = 0.;
/* L420: */
}
/* L430: */
}
}
if (ipackg == 5) {
ipackg = ipack;
} else {
ipackg = 0;
}
}
}
/* Ensure that the diagonal is real if Hermitian */
if (! csym) {
i__1 = *n;
for (jc = 1; jc <= i__1; ++jc) {
irow = ioffst + (1 - iskew) * jc;
i__2 = irow + jc * a_dim1;
i__4 = irow + jc * a_dim1;
d__1 = a[i__4].r;
z__1.r = d__1, z__1.i = 0.;
a[i__2].r = z__1.r, a[i__2].i = z__1.i;
/* L440: */
}
}
}
} else {
/* 4) Generate Banded Matrix by first */
/* Rotating by random Unitary matrices, */
/* then reducing the bandwidth using Householder */
/* transformations. */
/* Note: we should get here only if LDA .ge. N */
if (isym == 1) {
/* Non-symmetric -- A = U D V */
zlagge_(&mr, &nc, &llb, &uub, &d__[1], &a[a_offset], lda, &iseed[
1], &work[1], &iinfo);
} else {
/* Symmetric -- A = U D U' or */
/* Hermitian -- A = U D U* */
if (csym) {
zlagsy_(m, &llb, &d__[1], &a[a_offset], lda, &iseed[1], &work[
1], &iinfo);
} else {
zlaghe_(m, &llb, &d__[1], &a[a_offset], lda, &iseed[1], &work[
1], &iinfo);
}
}
if (iinfo != 0) {
*info = 3;
return;
}
}
/* 5) Pack the matrix */
if (ipack != ipackg) {
if (ipack == 1) {
/* 'U' -- Upper triangular, not packed */
i__1 = *m;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = j + 1; i__ <= i__2; ++i__) {
i__4 = i__ + j * a_dim1;
a[i__4].r = 0., a[i__4].i = 0.;
/* L450: */
}
/* L460: */
}
} else if (ipack == 2) {
/* 'L' -- Lower triangular, not packed */
i__1 = *m;
for (j = 2; j <= i__1; ++j) {
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
i__4 = i__ + j * a_dim1;
a[i__4].r = 0., a[i__4].i = 0.;
/* L470: */
}
/* L480: */
}
} else if (ipack == 3) {
/* 'C' -- Upper triangle packed Columnwise. */
icol = 1;
irow = 0;
i__1 = *m;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
++irow;
if (irow > *lda) {
irow = 1;
++icol;
}
i__4 = irow + icol * a_dim1;
i__3 = i__ + j * a_dim1;
a[i__4].r = a[i__3].r, a[i__4].i = a[i__3].i;
/* L490: */
}
/* L500: */
}
} else if (ipack == 4) {
/* 'R' -- Lower triangle packed Columnwise. */
icol = 1;
irow = 0;
i__1 = *m;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = j; i__ <= i__2; ++i__) {
++irow;
if (irow > *lda) {
irow = 1;
++icol;
}
i__4 = irow + icol * a_dim1;
i__3 = i__ + j * a_dim1;
a[i__4].r = a[i__3].r, a[i__4].i = a[i__3].i;
/* L510: */
}
/* L520: */
}
} else if (ipack >= 5) {
/* 'B' -- The lower triangle is packed as a band matrix. */
/* 'Q' -- The upper triangle is packed as a band matrix. */
/* 'Z' -- The whole matrix is packed as a band matrix. */
if (ipack == 5) {
uub = 0;
}
if (ipack == 6) {
llb = 0;
}
i__1 = uub;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
i__2 = j + llb;
for (i__ = f2cmin(i__2,*m); i__ >= 1; --i__) {
i__2 = i__ - j + uub + 1 + j * a_dim1;
i__4 = i__ + j * a_dim1;
a[i__2].r = a[i__4].r, a[i__2].i = a[i__4].i;
/* L530: */
}
/* L540: */
}
i__1 = *n;
for (j = uub + 2; j <= i__1; ++j) {
/* Computing MIN */
i__4 = j + llb;
i__2 = f2cmin(i__4,*m);
for (i__ = j - uub; i__ <= i__2; ++i__) {
i__4 = i__ - j + uub + 1 + j * a_dim1;
i__3 = i__ + j * a_dim1;
a[i__4].r = a[i__3].r, a[i__4].i = a[i__3].i;
/* L550: */
}
/* L560: */
}
}
/* If packed, zero out extraneous elements. */
/* Symmetric/Triangular Packed -- */
/* zero out everything after A(IROW,ICOL) */
if (ipack == 3 || ipack == 4) {
i__1 = *m;
for (jc = icol; jc <= i__1; ++jc) {
i__2 = *lda;
for (jr = irow + 1; jr <= i__2; ++jr) {
i__4 = jr + jc * a_dim1;
a[i__4].r = 0., a[i__4].i = 0.;
/* L570: */
}
irow = 0;
/* L580: */
}
} else if (ipack >= 5) {
/* Packed Band -- */
/* 1st row is now in A( UUB+2-j, j), zero above it */
/* m-th row is now in A( M+UUB-j,j), zero below it */
/* last non-zero diagonal is now in A( UUB+LLB+1,j ), */
/* zero below it, too. */
ir1 = uub + llb + 2;
ir2 = uub + *m + 2;
i__1 = *n;
for (jc = 1; jc <= i__1; ++jc) {
i__2 = uub + 1 - jc;
for (jr = 1; jr <= i__2; ++jr) {
i__4 = jr + jc * a_dim1;
a[i__4].r = 0., a[i__4].i = 0.;
/* L590: */
}
/* Computing MAX */
/* Computing MIN */
i__3 = ir1, i__5 = ir2 - jc;
i__2 = 1, i__4 = f2cmin(i__3,i__5);
i__6 = *lda;
for (jr = f2cmax(i__2,i__4); jr <= i__6; ++jr) {
i__2 = jr + jc * a_dim1;
a[i__2].r = 0., a[i__2].i = 0.;
/* L600: */
}
/* L610: */
}
}
}
return;
/* End of ZLATMT */
} /* zlatmt_ */