OpenBLAS/lapack-netlib/TESTING/MATGEN/slaror.c

595 lines
17 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#define F2C_proc_par_types 1
/* Table of constant values */
static real c_b9 = 0.f;
static real c_b10 = 1.f;
static integer c__3 = 3;
static integer c__1 = 1;
/* > \brief \b SLAROR */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* Definition: */
/* =========== */
/* SUBROUTINE SLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO ) */
/* CHARACTER INIT, SIDE */
/* INTEGER INFO, LDA, M, N */
/* INTEGER ISEED( 4 ) */
/* REAL A( LDA, * ), X( * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > SLAROR pre- or post-multiplies an M by N matrix A by a random */
/* > orthogonal matrix U, overwriting A. A may optionally be initialized */
/* > to the identity matrix before multiplying by U. U is generated using */
/* > the method of G.W. Stewart (SIAM J. Numer. Anal. 17, 1980, 403-409). */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > Specifies whether A is multiplied on the left or right by U. */
/* > = 'L': Multiply A on the left (premultiply) by U */
/* > = 'R': Multiply A on the right (postmultiply) by U' */
/* > = 'C' or 'T': Multiply A on the left by U and the right */
/* > by U' (Here, U' means U-transpose.) */
/* > \endverbatim */
/* > */
/* > \param[in] INIT */
/* > \verbatim */
/* > INIT is CHARACTER*1 */
/* > Specifies whether or not A should be initialized to the */
/* > identity matrix. */
/* > = 'I': Initialize A to (a section of) the identity matrix */
/* > before applying U. */
/* > = 'N': No initialization. Apply U to the input matrix A. */
/* > */
/* > INIT = 'I' may be used to generate square or rectangular */
/* > orthogonal matrices: */
/* > */
/* > For M = N and SIDE = 'L' or 'R', the rows will be orthogonal */
/* > to each other, as will the columns. */
/* > */
/* > If M < N, SIDE = 'R' produces a dense matrix whose rows are */
/* > orthogonal and whose columns are not, while SIDE = 'L' */
/* > produces a matrix whose rows are orthogonal, and whose first */
/* > M columns are orthogonal, and whose remaining columns are */
/* > zero. */
/* > */
/* > If M > N, SIDE = 'L' produces a dense matrix whose columns */
/* > are orthogonal and whose rows are not, while SIDE = 'R' */
/* > produces a matrix whose columns are orthogonal, and whose */
/* > first M rows are orthogonal, and whose remaining rows are */
/* > zero. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of A. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of A. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is REAL array, dimension (LDA, N) */
/* > On entry, the array A. */
/* > On exit, overwritten by U A ( if SIDE = 'L' ), */
/* > or by A U ( if SIDE = 'R' ), */
/* > or by U A U' ( if SIDE = 'C' or 'T'). */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] ISEED */
/* > \verbatim */
/* > ISEED is INTEGER array, dimension (4) */
/* > On entry ISEED specifies the seed of the random number */
/* > generator. The array elements should be between 0 and 4095; */
/* > if not they will be reduced mod 4096. Also, ISEED(4) must */
/* > be odd. The random number generator uses a linear */
/* > congruential sequence limited to small integers, and so */
/* > should produce machine independent random numbers. The */
/* > values of ISEED are changed on exit, and can be used in the */
/* > next call to SLAROR to continue the same random number */
/* > sequence. */
/* > \endverbatim */
/* > */
/* > \param[out] X */
/* > \verbatim */
/* > X is REAL array, dimension (3*MAX( M, N )) */
/* > Workspace of length */
/* > 2*M + N if SIDE = 'L', */
/* > 2*N + M if SIDE = 'R', */
/* > 3*N if SIDE = 'C' or 'T'. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > An error flag. It is set to: */
/* > = 0: normal return */
/* > < 0: if INFO = -k, the k-th argument had an illegal value */
/* > = 1: if the random numbers generated by SLARND are bad. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup real_matgen */
/* ===================================================================== */
/* Subroutine */ void slaror_(char *side, char *init, integer *m, integer *n,
real *a, integer *lda, integer *iseed, real *x, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
real r__1;
/* Local variables */
integer kbeg, jcol;
extern /* Subroutine */ void sger_(integer *, integer *, real *, real *,
integer *, real *, integer *, real *, integer *);
integer irow;
extern real snrm2_(integer *, real *, integer *);
integer j;
extern logical lsame_(char *, char *);
extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *),
sgemv_(char *, integer *, integer *, real *, real *, integer *,
real *, integer *, real *, real *, integer *);
integer ixfrm, itype, nxfrm;
real xnorm;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
real factor;
extern real slarnd_(integer *, integer *);
extern /* Subroutine */ void slaset_(char *, integer *, integer *, real *,
real *, real *, integer *);
real xnorms;
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--iseed;
--x;
/* Function Body */
*info = 0;
if (*n == 0 || *m == 0) {
return;
}
itype = 0;
if (lsame_(side, "L")) {
itype = 1;
} else if (lsame_(side, "R")) {
itype = 2;
} else if (lsame_(side, "C") || lsame_(side, "T")) {
itype = 3;
}
/* Check for argument errors. */
if (itype == 0) {
*info = -1;
} else if (*m < 0) {
*info = -3;
} else if (*n < 0 || itype == 3 && *n != *m) {
*info = -4;
} else if (*lda < *m) {
*info = -6;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SLAROR", &i__1, 6);
return;
}
if (itype == 1) {
nxfrm = *m;
} else {
nxfrm = *n;
}
/* Initialize A to the identity matrix if desired */
if (lsame_(init, "I")) {
slaset_("Full", m, n, &c_b9, &c_b10, &a[a_offset], lda);
}
/* If no rotation possible, multiply by random +/-1 */
/* Compute rotation by computing Householder transformations */
/* H(2), H(3), ..., H(nhouse) */
i__1 = nxfrm;
for (j = 1; j <= i__1; ++j) {
x[j] = 0.f;
/* L10: */
}
i__1 = nxfrm;
for (ixfrm = 2; ixfrm <= i__1; ++ixfrm) {
kbeg = nxfrm - ixfrm + 1;
/* Generate independent normal( 0, 1 ) random numbers */
i__2 = nxfrm;
for (j = kbeg; j <= i__2; ++j) {
x[j] = slarnd_(&c__3, &iseed[1]);
/* L20: */
}
/* Generate a Householder transformation from the random vector X */
xnorm = snrm2_(&ixfrm, &x[kbeg], &c__1);
xnorms = r_sign(&xnorm, &x[kbeg]);
r__1 = -x[kbeg];
x[kbeg + nxfrm] = r_sign(&c_b10, &r__1);
factor = xnorms * (xnorms + x[kbeg]);
if (abs(factor) < 1e-20f) {
*info = 1;
xerbla_("SLAROR", info, 6);
return;
} else {
factor = 1.f / factor;
}
x[kbeg] += xnorms;
/* Apply Householder transformation to A */
if (itype == 1 || itype == 3) {
/* Apply H(k) from the left. */
sgemv_("T", &ixfrm, n, &c_b10, &a[kbeg + a_dim1], lda, &x[kbeg], &
c__1, &c_b9, &x[(nxfrm << 1) + 1], &c__1);
r__1 = -factor;
sger_(&ixfrm, n, &r__1, &x[kbeg], &c__1, &x[(nxfrm << 1) + 1], &
c__1, &a[kbeg + a_dim1], lda);
}
if (itype == 2 || itype == 3) {
/* Apply H(k) from the right. */
sgemv_("N", m, &ixfrm, &c_b10, &a[kbeg * a_dim1 + 1], lda, &x[
kbeg], &c__1, &c_b9, &x[(nxfrm << 1) + 1], &c__1);
r__1 = -factor;
sger_(m, &ixfrm, &r__1, &x[(nxfrm << 1) + 1], &c__1, &x[kbeg], &
c__1, &a[kbeg * a_dim1 + 1], lda);
}
/* L30: */
}
r__1 = slarnd_(&c__3, &iseed[1]);
x[nxfrm * 2] = r_sign(&c_b10, &r__1);
/* Scale the matrix A by D. */
if (itype == 1 || itype == 3) {
i__1 = *m;
for (irow = 1; irow <= i__1; ++irow) {
sscal_(n, &x[nxfrm + irow], &a[irow + a_dim1], lda);
/* L40: */
}
}
if (itype == 2 || itype == 3) {
i__1 = *n;
for (jcol = 1; jcol <= i__1; ++jcol) {
sscal_(m, &x[nxfrm + jcol], &a[jcol * a_dim1 + 1], &c__1);
/* L50: */
}
}
return;
/* End of SLAROR */
} /* slaror_ */