588 lines
17 KiB
C
588 lines
17 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef int logical;
|
|
typedef short int shortlogical;
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
#define F2C_proc_par_types 1
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__2 = 2;
|
|
static complex c_b6 = {0.f,0.f};
|
|
|
|
/* > \brief \b CLAHILB */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE CLAHILB( N, NRHS, A, LDA, X, LDX, B, LDB, WORK, */
|
|
/* INFO, PATH) */
|
|
|
|
/* INTEGER N, NRHS, LDA, LDX, LDB, INFO */
|
|
/* REAL WORK(N) */
|
|
/* COMPLEX A(LDA,N), X(LDX, NRHS), B(LDB, NRHS) */
|
|
/* CHARACTER*3 PATH */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > CLAHILB generates an N by N scaled Hilbert matrix in A along with */
|
|
/* > NRHS right-hand sides in B and solutions in X such that A*X=B. */
|
|
/* > */
|
|
/* > The Hilbert matrix is scaled by M = LCM(1, 2, ..., 2*N-1) so that all */
|
|
/* > entries are integers. The right-hand sides are the first NRHS */
|
|
/* > columns of M * the identity matrix, and the solutions are the */
|
|
/* > first NRHS columns of the inverse Hilbert matrix. */
|
|
/* > */
|
|
/* > The condition number of the Hilbert matrix grows exponentially with */
|
|
/* > its size, roughly as O(e ** (3.5*N)). Additionally, the inverse */
|
|
/* > Hilbert matrices beyond a relatively small dimension cannot be */
|
|
/* > generated exactly without extra precision. Precision is exhausted */
|
|
/* > when the largest entry in the inverse Hilbert matrix is greater than */
|
|
/* > 2 to the power of the number of bits in the fraction of the data type */
|
|
/* > used plus one, which is 24 for single precision. */
|
|
/* > */
|
|
/* > In single, the generated solution is exact for N <= 6 and has */
|
|
/* > small componentwise error for 7 <= N <= 11. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The dimension of the matrix A. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] NRHS */
|
|
/* > \verbatim */
|
|
/* > NRHS is INTEGER */
|
|
/* > The requested number of right-hand sides. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] A */
|
|
/* > \verbatim */
|
|
/* > A is COMPLEX array, dimension (LDA, N) */
|
|
/* > The generated scaled Hilbert matrix. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of the array A. LDA >= N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] X */
|
|
/* > \verbatim */
|
|
/* > X is COMPLEX array, dimension (LDX, NRHS) */
|
|
/* > The generated exact solutions. Currently, the first NRHS */
|
|
/* > columns of the inverse Hilbert matrix. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDX */
|
|
/* > \verbatim */
|
|
/* > LDX is INTEGER */
|
|
/* > The leading dimension of the array X. LDX >= N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] B */
|
|
/* > \verbatim */
|
|
/* > B is REAL array, dimension (LDB, NRHS) */
|
|
/* > The generated right-hand sides. Currently, the first NRHS */
|
|
/* > columns of LCM(1, 2, ..., 2*N-1) * the identity matrix. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDB */
|
|
/* > \verbatim */
|
|
/* > LDB is INTEGER */
|
|
/* > The leading dimension of the array B. LDB >= N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is REAL array, dimension (N) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > = 1: N is too large; the data is still generated but may not */
|
|
/* > be not exact. */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] PATH */
|
|
/* > \verbatim */
|
|
/* > PATH is CHARACTER*3 */
|
|
/* > The LAPACK path name. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date November 2017 */
|
|
|
|
/* > \ingroup complex_matgen */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void clahilb_(integer *n, integer *nrhs, complex *a, integer *
|
|
lda, complex *x, integer *ldx, complex *b, integer *ldb, real *work,
|
|
integer *info, char *path)
|
|
{
|
|
/* Initialized data */
|
|
|
|
static complex d1[8] = { {-1.f,0.f},{0.f,1.f},{-1.f,-1.f},{0.f,-1.f},{1.f,
|
|
0.f},{-1.f,1.f},{1.f,1.f},{1.f,-1.f} };
|
|
static complex d2[8] = { {-1.f,0.f},{0.f,-1.f},{-1.f,1.f},{0.f,1.f},{1.f,
|
|
0.f},{-1.f,-1.f},{1.f,-1.f},{1.f,1.f} };
|
|
static complex invd1[8] = { {-1.f,0.f},{0.f,-1.f},{-.5f,.5f},{0.f,1.f},{
|
|
1.f,0.f},{-.5f,-.5f},{.5f,-.5f},{.5f,.5f} };
|
|
static complex invd2[8] = { {-1.f,0.f},{0.f,1.f},{-.5f,-.5f},{0.f,-1.f},{
|
|
1.f,0.f},{-.5f,.5f},{.5f,.5f},{.5f,-.5f} };
|
|
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, x_dim1, x_offset, b_dim1, b_offset, i__1, i__2,
|
|
i__3, i__4, i__5;
|
|
real r__1;
|
|
complex q__1, q__2;
|
|
|
|
/* Local variables */
|
|
integer i__, j, m, r__;
|
|
char c2[2];
|
|
integer ti, tm;
|
|
extern /* Subroutine */ void claset_(char *, integer *, integer *, complex
|
|
*, complex *, complex *, integer *);
|
|
extern int xerbla_(char *, integer *, ftnlen);
|
|
extern logical lsamen_(integer *, char *, char *);
|
|
complex tmp;
|
|
|
|
|
|
/* -- LAPACK test routine (version 3.8.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* November 2017 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
/* NMAX_EXACT the largest dimension where the generated data is */
|
|
/* exact. */
|
|
/* NMAX_APPROX the largest dimension where the generated data has */
|
|
/* a small componentwise relative error. */
|
|
/* ??? complex uses how many bits ??? */
|
|
|
|
/* d's are generated from random permutation of those eight elements. */
|
|
/* Parameter adjustments */
|
|
--work;
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
x_dim1 = *ldx;
|
|
x_offset = 1 + x_dim1 * 1;
|
|
x -= x_offset;
|
|
b_dim1 = *ldb;
|
|
b_offset = 1 + b_dim1 * 1;
|
|
b -= b_offset;
|
|
|
|
/* Function Body */
|
|
s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);
|
|
|
|
/* Test the input arguments */
|
|
|
|
*info = 0;
|
|
if (*n < 0 || *n > 11) {
|
|
*info = -1;
|
|
} else if (*nrhs < 0) {
|
|
*info = -2;
|
|
} else if (*lda < *n) {
|
|
*info = -4;
|
|
} else if (*ldx < *n) {
|
|
*info = -6;
|
|
} else if (*ldb < *n) {
|
|
*info = -8;
|
|
}
|
|
if (*info < 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("CLAHILB", &i__1, 7);
|
|
return;
|
|
}
|
|
if (*n > 6) {
|
|
*info = 1;
|
|
}
|
|
|
|
/* Compute M = the LCM of the integers [1, 2*N-1]. The largest */
|
|
/* reasonable N is small enough that integers suffice (up to N = 11). */
|
|
m = 1;
|
|
i__1 = (*n << 1) - 1;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
tm = m;
|
|
ti = i__;
|
|
r__ = tm % ti;
|
|
while(r__ != 0) {
|
|
tm = ti;
|
|
ti = r__;
|
|
r__ = tm % ti;
|
|
}
|
|
m = m / ti * i__;
|
|
}
|
|
|
|
/* Generate the scaled Hilbert matrix in A */
|
|
/* If we are testing SY routines, take */
|
|
/* D1_i = D2_i, else, D1_i = D2_i* */
|
|
if (lsamen_(&c__2, c2, "SY")) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *n;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + j * a_dim1;
|
|
i__4 = j % 8;
|
|
r__1 = (real) m / (i__ + j - 1);
|
|
q__2.r = r__1 * d1[i__4].r, q__2.i = r__1 * d1[i__4].i;
|
|
i__5 = i__ % 8;
|
|
q__1.r = q__2.r * d1[i__5].r - q__2.i * d1[i__5].i, q__1.i =
|
|
q__2.r * d1[i__5].i + q__2.i * d1[i__5].r;
|
|
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
|
|
}
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *n;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + j * a_dim1;
|
|
i__4 = j % 8;
|
|
r__1 = (real) m / (i__ + j - 1);
|
|
q__2.r = r__1 * d1[i__4].r, q__2.i = r__1 * d1[i__4].i;
|
|
i__5 = i__ % 8;
|
|
q__1.r = q__2.r * d2[i__5].r - q__2.i * d2[i__5].i, q__1.i =
|
|
q__2.r * d2[i__5].i + q__2.i * d2[i__5].r;
|
|
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Generate matrix B as simply the first NRHS columns of M * the */
|
|
/* identity. */
|
|
r__1 = (real) m;
|
|
tmp.r = r__1, tmp.i = 0.f;
|
|
claset_("Full", n, nrhs, &c_b6, &tmp, &b[b_offset], ldb);
|
|
|
|
/* Generate the true solutions in X. Because B = the first NRHS */
|
|
/* columns of M*I, the true solutions are just the first NRHS columns */
|
|
/* of the inverse Hilbert matrix. */
|
|
work[1] = (real) (*n);
|
|
i__1 = *n;
|
|
for (j = 2; j <= i__1; ++j) {
|
|
work[j] = work[j - 1] / (j - 1) * (j - 1 - *n) / (j - 1) * (*n + j -
|
|
1);
|
|
}
|
|
/* If we are testing SY routines, */
|
|
/* take D1_i = D2_i, else, D1_i = D2_i* */
|
|
if (lsamen_(&c__2, c2, "SY")) {
|
|
i__1 = *nrhs;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *n;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + j * x_dim1;
|
|
i__4 = j % 8;
|
|
r__1 = work[i__] * work[j] / (i__ + j - 1);
|
|
q__2.r = r__1 * invd1[i__4].r, q__2.i = r__1 * invd1[i__4].i;
|
|
i__5 = i__ % 8;
|
|
q__1.r = q__2.r * invd1[i__5].r - q__2.i * invd1[i__5].i,
|
|
q__1.i = q__2.r * invd1[i__5].i + q__2.i * invd1[i__5]
|
|
.r;
|
|
x[i__3].r = q__1.r, x[i__3].i = q__1.i;
|
|
}
|
|
}
|
|
} else {
|
|
i__1 = *nrhs;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *n;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + j * x_dim1;
|
|
i__4 = j % 8;
|
|
r__1 = work[i__] * work[j] / (i__ + j - 1);
|
|
q__2.r = r__1 * invd2[i__4].r, q__2.i = r__1 * invd2[i__4].i;
|
|
i__5 = i__ % 8;
|
|
q__1.r = q__2.r * invd1[i__5].r - q__2.i * invd1[i__5].i,
|
|
q__1.i = q__2.r * invd1[i__5].i + q__2.i * invd1[i__5]
|
|
.r;
|
|
x[i__3].r = q__1.r, x[i__3].i = q__1.i;
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
} /* clahilb_ */
|
|
|