895 lines
26 KiB
C
895 lines
26 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef int logical;
|
|
typedef short int shortlogical;
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
#define F2C_proc_par_types 1
|
|
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static integer c_n1 = -1;
|
|
static real c_b36 = 0.f;
|
|
static real c_b37 = 1.f;
|
|
|
|
/* > \brief <b> SGEGS computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matr
|
|
ices</b> */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download SGEGS + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgegs.f
|
|
"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgegs.f
|
|
"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgegs.f
|
|
"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE SGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR, */
|
|
/* ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK, */
|
|
/* LWORK, INFO ) */
|
|
|
|
/* CHARACTER JOBVSL, JOBVSR */
|
|
/* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N */
|
|
/* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
|
|
/* $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ), */
|
|
/* $ VSR( LDVSR, * ), WORK( * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > This routine is deprecated and has been replaced by routine SGGES. */
|
|
/* > */
|
|
/* > SGEGS computes the eigenvalues, real Schur form, and, optionally, */
|
|
/* > left and or/right Schur vectors of a real matrix pair (A,B). */
|
|
/* > Given two square matrices A and B, the generalized real Schur */
|
|
/* > factorization has the form */
|
|
/* > */
|
|
/* > A = Q*S*Z**T, B = Q*T*Z**T */
|
|
/* > */
|
|
/* > where Q and Z are orthogonal matrices, T is upper triangular, and S */
|
|
/* > is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal */
|
|
/* > blocks, the 2-by-2 blocks corresponding to complex conjugate pairs */
|
|
/* > of eigenvalues of (A,B). The columns of Q are the left Schur vectors */
|
|
/* > and the columns of Z are the right Schur vectors. */
|
|
/* > */
|
|
/* > If only the eigenvalues of (A,B) are needed, the driver routine */
|
|
/* > SGEGV should be used instead. See SGEGV for a description of the */
|
|
/* > eigenvalues of the generalized nonsymmetric eigenvalue problem */
|
|
/* > (GNEP). */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] JOBVSL */
|
|
/* > \verbatim */
|
|
/* > JOBVSL is CHARACTER*1 */
|
|
/* > = 'N': do not compute the left Schur vectors; */
|
|
/* > = 'V': compute the left Schur vectors (returned in VSL). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] JOBVSR */
|
|
/* > \verbatim */
|
|
/* > JOBVSR is CHARACTER*1 */
|
|
/* > = 'N': do not compute the right Schur vectors; */
|
|
/* > = 'V': compute the right Schur vectors (returned in VSR). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrices A, B, VSL, and VSR. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] A */
|
|
/* > \verbatim */
|
|
/* > A is REAL array, dimension (LDA, N) */
|
|
/* > On entry, the matrix A. */
|
|
/* > On exit, the upper quasi-triangular matrix S from the */
|
|
/* > generalized real Schur factorization. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of A. LDA >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] B */
|
|
/* > \verbatim */
|
|
/* > B is REAL array, dimension (LDB, N) */
|
|
/* > On entry, the matrix B. */
|
|
/* > On exit, the upper triangular matrix T from the generalized */
|
|
/* > real Schur factorization. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDB */
|
|
/* > \verbatim */
|
|
/* > LDB is INTEGER */
|
|
/* > The leading dimension of B. LDB >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] ALPHAR */
|
|
/* > \verbatim */
|
|
/* > ALPHAR is REAL array, dimension (N) */
|
|
/* > The real parts of each scalar alpha defining an eigenvalue */
|
|
/* > of GNEP. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] ALPHAI */
|
|
/* > \verbatim */
|
|
/* > ALPHAI is REAL array, dimension (N) */
|
|
/* > The imaginary parts of each scalar alpha defining an */
|
|
/* > eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th */
|
|
/* > eigenvalue is real; if positive, then the j-th and (j+1)-st */
|
|
/* > eigenvalues are a complex conjugate pair, with */
|
|
/* > ALPHAI(j+1) = -ALPHAI(j). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] BETA */
|
|
/* > \verbatim */
|
|
/* > BETA is REAL array, dimension (N) */
|
|
/* > The scalars beta that define the eigenvalues of GNEP. */
|
|
/* > Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */
|
|
/* > beta = BETA(j) represent the j-th eigenvalue of the matrix */
|
|
/* > pair (A,B), in one of the forms lambda = alpha/beta or */
|
|
/* > mu = beta/alpha. Since either lambda or mu may overflow, */
|
|
/* > they should not, in general, be computed. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] VSL */
|
|
/* > \verbatim */
|
|
/* > VSL is REAL array, dimension (LDVSL,N) */
|
|
/* > If JOBVSL = 'V', the matrix of left Schur vectors Q. */
|
|
/* > Not referenced if JOBVSL = 'N'. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDVSL */
|
|
/* > \verbatim */
|
|
/* > LDVSL is INTEGER */
|
|
/* > The leading dimension of the matrix VSL. LDVSL >=1, and */
|
|
/* > if JOBVSL = 'V', LDVSL >= N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] VSR */
|
|
/* > \verbatim */
|
|
/* > VSR is REAL array, dimension (LDVSR,N) */
|
|
/* > If JOBVSR = 'V', the matrix of right Schur vectors Z. */
|
|
/* > Not referenced if JOBVSR = 'N'. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDVSR */
|
|
/* > \verbatim */
|
|
/* > LDVSR is INTEGER */
|
|
/* > The leading dimension of the matrix VSR. LDVSR >= 1, and */
|
|
/* > if JOBVSR = 'V', LDVSR >= N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is REAL array, dimension (MAX(1,LWORK)) */
|
|
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LWORK */
|
|
/* > \verbatim */
|
|
/* > LWORK is INTEGER */
|
|
/* > The dimension of the array WORK. LWORK >= f2cmax(1,4*N). */
|
|
/* > For good performance, LWORK must generally be larger. */
|
|
/* > To compute the optimal value of LWORK, call ILAENV to get */
|
|
/* > blocksizes (for SGEQRF, SORMQR, and SORGQR.) Then compute: */
|
|
/* > NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR */
|
|
/* > The optimal LWORK is 2*N + N*(NB+1). */
|
|
/* > */
|
|
/* > If LWORK = -1, then a workspace query is assumed; the routine */
|
|
/* > only calculates the optimal size of the WORK array, returns */
|
|
/* > this value as the first entry of the WORK array, and no error */
|
|
/* > message related to LWORK is issued by XERBLA. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
|
|
/* > = 1,...,N: */
|
|
/* > The QZ iteration failed. (A,B) are not in Schur */
|
|
/* > form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */
|
|
/* > be correct for j=INFO+1,...,N. */
|
|
/* > > N: errors that usually indicate LAPACK problems: */
|
|
/* > =N+1: error return from SGGBAL */
|
|
/* > =N+2: error return from SGEQRF */
|
|
/* > =N+3: error return from SORMQR */
|
|
/* > =N+4: error return from SORGQR */
|
|
/* > =N+5: error return from SGGHRD */
|
|
/* > =N+6: error return from SHGEQZ (other than failed */
|
|
/* > iteration) */
|
|
/* > =N+7: error return from SGGBAK (computing VSL) */
|
|
/* > =N+8: error return from SGGBAK (computing VSR) */
|
|
/* > =N+9: error return from SLASCL (various places) */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date December 2016 */
|
|
|
|
/* > \ingroup realGEeigen */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void sgegs_(char *jobvsl, char *jobvsr, integer *n, real *a,
|
|
integer *lda, real *b, integer *ldb, real *alphar, real *alphai, real
|
|
*beta, real *vsl, integer *ldvsl, real *vsr, integer *ldvsr, real *
|
|
work, integer *lwork, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset,
|
|
vsr_dim1, vsr_offset, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
real anrm, bnrm;
|
|
integer itau, lopt;
|
|
extern logical lsame_(char *, char *);
|
|
integer ileft, iinfo, icols;
|
|
logical ilvsl;
|
|
integer iwork;
|
|
logical ilvsr;
|
|
integer irows, nb;
|
|
extern /* Subroutine */ void sggbak_(char *, char *, integer *, integer *,
|
|
integer *, real *, real *, integer *, real *, integer *, integer *
|
|
), sggbal_(char *, integer *, real *, integer *,
|
|
real *, integer *, integer *, integer *, real *, real *, real *,
|
|
integer *);
|
|
logical ilascl, ilbscl;
|
|
extern real slamch_(char *), slange_(char *, integer *, integer *,
|
|
real *, integer *, real *);
|
|
real safmin;
|
|
extern /* Subroutine */ void sgghrd_(char *, char *, integer *, integer *,
|
|
integer *, real *, integer *, real *, integer *, real *, integer *
|
|
, real *, integer *, integer *);
|
|
extern int xerbla_(char *, integer *, ftnlen);
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *, ftnlen, ftnlen);
|
|
real bignum;
|
|
extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
|
|
real *, integer *, integer *, real *, integer *, integer *);
|
|
integer ijobvl, iright;
|
|
extern /* Subroutine */ void sgeqrf_(integer *, integer *, real *, integer
|
|
*, real *, real *, integer *, integer *);
|
|
integer ijobvr;
|
|
extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
|
|
integer *, real *, integer *), slaset_(char *, integer *,
|
|
integer *, real *, real *, real *, integer *);
|
|
real anrmto;
|
|
integer lwkmin, nb1, nb2, nb3;
|
|
real bnrmto;
|
|
extern /* Subroutine */ void shgeqz_(char *, char *, char *, integer *,
|
|
integer *, integer *, real *, integer *, real *, integer *, real *
|
|
, real *, real *, real *, integer *, real *, integer *, real *,
|
|
integer *, integer *);
|
|
real smlnum;
|
|
extern /* Subroutine */ void sorgqr_(integer *, integer *, integer *, real
|
|
*, integer *, real *, real *, integer *, integer *);
|
|
integer lwkopt;
|
|
logical lquery;
|
|
extern /* Subroutine */ void sormqr_(char *, char *, integer *, integer *,
|
|
integer *, real *, integer *, real *, real *, integer *, real *,
|
|
integer *, integer *);
|
|
integer ihi, ilo;
|
|
real eps;
|
|
|
|
|
|
/* -- LAPACK driver routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* December 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* Decode the input arguments */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
b_dim1 = *ldb;
|
|
b_offset = 1 + b_dim1 * 1;
|
|
b -= b_offset;
|
|
--alphar;
|
|
--alphai;
|
|
--beta;
|
|
vsl_dim1 = *ldvsl;
|
|
vsl_offset = 1 + vsl_dim1 * 1;
|
|
vsl -= vsl_offset;
|
|
vsr_dim1 = *ldvsr;
|
|
vsr_offset = 1 + vsr_dim1 * 1;
|
|
vsr -= vsr_offset;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
if (lsame_(jobvsl, "N")) {
|
|
ijobvl = 1;
|
|
ilvsl = FALSE_;
|
|
} else if (lsame_(jobvsl, "V")) {
|
|
ijobvl = 2;
|
|
ilvsl = TRUE_;
|
|
} else {
|
|
ijobvl = -1;
|
|
ilvsl = FALSE_;
|
|
}
|
|
|
|
if (lsame_(jobvsr, "N")) {
|
|
ijobvr = 1;
|
|
ilvsr = FALSE_;
|
|
} else if (lsame_(jobvsr, "V")) {
|
|
ijobvr = 2;
|
|
ilvsr = TRUE_;
|
|
} else {
|
|
ijobvr = -1;
|
|
ilvsr = FALSE_;
|
|
}
|
|
|
|
/* Test the input arguments */
|
|
|
|
/* Computing MAX */
|
|
i__1 = *n << 2;
|
|
lwkmin = f2cmax(i__1,1);
|
|
lwkopt = lwkmin;
|
|
work[1] = (real) lwkopt;
|
|
lquery = *lwork == -1;
|
|
*info = 0;
|
|
if (ijobvl <= 0) {
|
|
*info = -1;
|
|
} else if (ijobvr <= 0) {
|
|
*info = -2;
|
|
} else if (*n < 0) {
|
|
*info = -3;
|
|
} else if (*lda < f2cmax(1,*n)) {
|
|
*info = -5;
|
|
} else if (*ldb < f2cmax(1,*n)) {
|
|
*info = -7;
|
|
} else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
|
|
*info = -12;
|
|
} else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
|
|
*info = -14;
|
|
} else if (*lwork < lwkmin && ! lquery) {
|
|
*info = -16;
|
|
}
|
|
|
|
if (*info == 0) {
|
|
nb1 = ilaenv_(&c__1, "SGEQRF", " ", n, n, &c_n1, &c_n1, (ftnlen)6, (
|
|
ftnlen)1);
|
|
nb2 = ilaenv_(&c__1, "SORMQR", " ", n, n, n, &c_n1, (ftnlen)6, (
|
|
ftnlen)1);
|
|
nb3 = ilaenv_(&c__1, "SORGQR", " ", n, n, n, &c_n1, (ftnlen)6, (
|
|
ftnlen)1);
|
|
/* Computing MAX */
|
|
i__1 = f2cmax(nb1,nb2);
|
|
nb = f2cmax(i__1,nb3);
|
|
lopt = (*n << 1) + *n * (nb + 1);
|
|
work[1] = (real) lopt;
|
|
}
|
|
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("SGEGS ", &i__1, 6);
|
|
return;
|
|
} else if (lquery) {
|
|
return;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return;
|
|
}
|
|
|
|
/* Get machine constants */
|
|
|
|
eps = slamch_("E") * slamch_("B");
|
|
safmin = slamch_("S");
|
|
smlnum = *n * safmin / eps;
|
|
bignum = 1.f / smlnum;
|
|
|
|
/* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
|
|
|
|
anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]);
|
|
ilascl = FALSE_;
|
|
if (anrm > 0.f && anrm < smlnum) {
|
|
anrmto = smlnum;
|
|
ilascl = TRUE_;
|
|
} else if (anrm > bignum) {
|
|
anrmto = bignum;
|
|
ilascl = TRUE_;
|
|
}
|
|
|
|
if (ilascl) {
|
|
slascl_("G", &c_n1, &c_n1, &anrm, &anrmto, n, n, &a[a_offset], lda, &
|
|
iinfo);
|
|
if (iinfo != 0) {
|
|
*info = *n + 9;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
|
|
|
|
bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]);
|
|
ilbscl = FALSE_;
|
|
if (bnrm > 0.f && bnrm < smlnum) {
|
|
bnrmto = smlnum;
|
|
ilbscl = TRUE_;
|
|
} else if (bnrm > bignum) {
|
|
bnrmto = bignum;
|
|
ilbscl = TRUE_;
|
|
}
|
|
|
|
if (ilbscl) {
|
|
slascl_("G", &c_n1, &c_n1, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
|
|
iinfo);
|
|
if (iinfo != 0) {
|
|
*info = *n + 9;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Permute the matrix to make it more nearly triangular */
|
|
/* Workspace layout: (2*N words -- "work..." not actually used) */
|
|
/* left_permutation, right_permutation, work... */
|
|
|
|
ileft = 1;
|
|
iright = *n + 1;
|
|
iwork = iright + *n;
|
|
sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
|
|
ileft], &work[iright], &work[iwork], &iinfo);
|
|
if (iinfo != 0) {
|
|
*info = *n + 1;
|
|
goto L10;
|
|
}
|
|
|
|
/* Reduce B to triangular form, and initialize VSL and/or VSR */
|
|
/* Workspace layout: ("work..." must have at least N words) */
|
|
/* left_permutation, right_permutation, tau, work... */
|
|
|
|
irows = ihi + 1 - ilo;
|
|
icols = *n + 1 - ilo;
|
|
itau = iwork;
|
|
iwork = itau + irows;
|
|
i__1 = *lwork + 1 - iwork;
|
|
sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
|
|
iwork], &i__1, &iinfo);
|
|
if (iinfo >= 0) {
|
|
/* Computing MAX */
|
|
i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
|
|
lwkopt = f2cmax(i__1,i__2);
|
|
}
|
|
if (iinfo != 0) {
|
|
*info = *n + 2;
|
|
goto L10;
|
|
}
|
|
|
|
i__1 = *lwork + 1 - iwork;
|
|
sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
|
|
work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &
|
|
iinfo);
|
|
if (iinfo >= 0) {
|
|
/* Computing MAX */
|
|
i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
|
|
lwkopt = f2cmax(i__1,i__2);
|
|
}
|
|
if (iinfo != 0) {
|
|
*info = *n + 3;
|
|
goto L10;
|
|
}
|
|
|
|
if (ilvsl) {
|
|
slaset_("Full", n, n, &c_b36, &c_b37, &vsl[vsl_offset], ldvsl);
|
|
i__1 = irows - 1;
|
|
i__2 = irows - 1;
|
|
slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[ilo
|
|
+ 1 + ilo * vsl_dim1], ldvsl);
|
|
i__1 = *lwork + 1 - iwork;
|
|
sorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
|
|
work[itau], &work[iwork], &i__1, &iinfo);
|
|
if (iinfo >= 0) {
|
|
/* Computing MAX */
|
|
i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
|
|
lwkopt = f2cmax(i__1,i__2);
|
|
}
|
|
if (iinfo != 0) {
|
|
*info = *n + 4;
|
|
goto L10;
|
|
}
|
|
}
|
|
|
|
if (ilvsr) {
|
|
slaset_("Full", n, n, &c_b36, &c_b37, &vsr[vsr_offset], ldvsr);
|
|
}
|
|
|
|
/* Reduce to generalized Hessenberg form */
|
|
|
|
sgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
|
|
ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &iinfo);
|
|
if (iinfo != 0) {
|
|
*info = *n + 5;
|
|
goto L10;
|
|
}
|
|
|
|
/* Perform QZ algorithm, computing Schur vectors if desired */
|
|
/* Workspace layout: ("work..." must have at least 1 word) */
|
|
/* left_permutation, right_permutation, work... */
|
|
|
|
iwork = itau;
|
|
i__1 = *lwork + 1 - iwork;
|
|
shgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
|
|
b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset]
|
|
, ldvsl, &vsr[vsr_offset], ldvsr, &work[iwork], &i__1, &iinfo);
|
|
if (iinfo >= 0) {
|
|
/* Computing MAX */
|
|
i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
|
|
lwkopt = f2cmax(i__1,i__2);
|
|
}
|
|
if (iinfo != 0) {
|
|
if (iinfo > 0 && iinfo <= *n) {
|
|
*info = iinfo;
|
|
} else if (iinfo > *n && iinfo <= *n << 1) {
|
|
*info = iinfo - *n;
|
|
} else {
|
|
*info = *n + 6;
|
|
}
|
|
goto L10;
|
|
}
|
|
|
|
/* Apply permutation to VSL and VSR */
|
|
|
|
if (ilvsl) {
|
|
sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[
|
|
vsl_offset], ldvsl, &iinfo);
|
|
if (iinfo != 0) {
|
|
*info = *n + 7;
|
|
goto L10;
|
|
}
|
|
}
|
|
if (ilvsr) {
|
|
sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[
|
|
vsr_offset], ldvsr, &iinfo);
|
|
if (iinfo != 0) {
|
|
*info = *n + 8;
|
|
goto L10;
|
|
}
|
|
}
|
|
|
|
/* Undo scaling */
|
|
|
|
if (ilascl) {
|
|
slascl_("H", &c_n1, &c_n1, &anrmto, &anrm, n, n, &a[a_offset], lda, &
|
|
iinfo);
|
|
if (iinfo != 0) {
|
|
*info = *n + 9;
|
|
return;
|
|
}
|
|
slascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
|
|
iinfo);
|
|
if (iinfo != 0) {
|
|
*info = *n + 9;
|
|
return;
|
|
}
|
|
slascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
|
|
iinfo);
|
|
if (iinfo != 0) {
|
|
*info = *n + 9;
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (ilbscl) {
|
|
slascl_("U", &c_n1, &c_n1, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
|
|
iinfo);
|
|
if (iinfo != 0) {
|
|
*info = *n + 9;
|
|
return;
|
|
}
|
|
slascl_("G", &c_n1, &c_n1, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
|
|
iinfo);
|
|
if (iinfo != 0) {
|
|
*info = *n + 9;
|
|
return;
|
|
}
|
|
}
|
|
|
|
L10:
|
|
work[1] = (real) lwkopt;
|
|
|
|
return;
|
|
|
|
/* End of SGEGS */
|
|
|
|
} /* sgegs_ */
|
|
|