208 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			208 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZPOEQU
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZPOEQU + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpoequ.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpoequ.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpoequ.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZPOEQU( N, A, LDA, S, SCOND, AMAX, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, N
 | |
| *       DOUBLE PRECISION   AMAX, SCOND
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   S( * )
 | |
| *       COMPLEX*16         A( LDA, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZPOEQU computes row and column scalings intended to equilibrate a
 | |
| *> Hermitian positive definite matrix A and reduce its condition number
 | |
| *> (with respect to the two-norm).  S contains the scale factors,
 | |
| *> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
 | |
| *> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This
 | |
| *> choice of S puts the condition number of B within a factor N of the
 | |
| *> smallest possible condition number over all possible diagonal
 | |
| *> scalings.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          The N-by-N Hermitian positive definite matrix whose scaling
 | |
| *>          factors are to be computed.  Only the diagonal elements of A
 | |
| *>          are referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] S
 | |
| *> \verbatim
 | |
| *>          S is DOUBLE PRECISION array, dimension (N)
 | |
| *>          If INFO = 0, S contains the scale factors for A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SCOND
 | |
| *> \verbatim
 | |
| *>          SCOND is DOUBLE PRECISION
 | |
| *>          If INFO = 0, S contains the ratio of the smallest S(i) to
 | |
| *>          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
 | |
| *>          large nor too small, it is not worth scaling by S.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] AMAX
 | |
| *> \verbatim
 | |
| *>          AMAX is DOUBLE PRECISION
 | |
| *>          Absolute value of largest matrix element.  If AMAX is very
 | |
| *>          close to overflow or very close to underflow, the matrix
 | |
| *>          should be scaled.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16POcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZPOEQU( N, A, LDA, S, SCOND, AMAX, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, N
 | |
|       DOUBLE PRECISION   AMAX, SCOND
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   S( * )
 | |
|       COMPLEX*16         A( LDA, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I
 | |
|       DOUBLE PRECISION   SMIN
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( N.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -3
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZPOEQU', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          SCOND = ONE
 | |
|          AMAX = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Find the minimum and maximum diagonal elements.
 | |
| *
 | |
|       S( 1 ) = DBLE( A( 1, 1 ) )
 | |
|       SMIN = S( 1 )
 | |
|       AMAX = S( 1 )
 | |
|       DO 10 I = 2, N
 | |
|          S( I ) = DBLE( A( I, I ) )
 | |
|          SMIN = MIN( SMIN, S( I ) )
 | |
|          AMAX = MAX( AMAX, S( I ) )
 | |
|    10 CONTINUE
 | |
| *
 | |
|       IF( SMIN.LE.ZERO ) THEN
 | |
| *
 | |
| *        Find the first non-positive diagonal element and return.
 | |
| *
 | |
|          DO 20 I = 1, N
 | |
|             IF( S( I ).LE.ZERO ) THEN
 | |
|                INFO = I
 | |
|                RETURN
 | |
|             END IF
 | |
|    20    CONTINUE
 | |
|       ELSE
 | |
| *
 | |
| *        Set the scale factors to the reciprocals
 | |
| *        of the diagonal elements.
 | |
| *
 | |
|          DO 30 I = 1, N
 | |
|             S( I ) = ONE / SQRT( S( I ) )
 | |
|    30    CONTINUE
 | |
| *
 | |
| *        Compute SCOND = min(S(I)) / max(S(I))
 | |
| *
 | |
|          SCOND = SQRT( SMIN ) / SQRT( AMAX )
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZPOEQU
 | |
| *
 | |
|       END
 |