OpenBLAS/lapack-netlib/TESTING/MATGEN/slatmr.c

1893 lines
56 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#define F2C_proc_par_types 1
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static integer c__0 = 0;
static integer c__1 = 1;
/* > \brief \b SLATMR */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* Definition: */
/* =========== */
/* SUBROUTINE SLATMR( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, */
/* RSIGN, GRADE, DL, MODEL, CONDL, DR, MODER, */
/* CONDR, PIVTNG, IPIVOT, KL, KU, SPARSE, ANORM, */
/* PACK, A, LDA, IWORK, INFO ) */
/* CHARACTER DIST, GRADE, PACK, PIVTNG, RSIGN, SYM */
/* INTEGER INFO, KL, KU, LDA, M, MODE, MODEL, MODER, N */
/* REAL ANORM, COND, CONDL, CONDR, DMAX, SPARSE */
/* INTEGER IPIVOT( * ), ISEED( 4 ), IWORK( * ) */
/* REAL A( LDA, * ), D( * ), DL( * ), DR( * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > SLATMR generates random matrices of various types for testing */
/* > LAPACK programs. */
/* > */
/* > SLATMR operates by applying the following sequence of */
/* > operations: */
/* > */
/* > Generate a matrix A with random entries of distribution DIST */
/* > which is symmetric if SYM='S', and nonsymmetric */
/* > if SYM='N'. */
/* > */
/* > Set the diagonal to D, where D may be input or */
/* > computed according to MODE, COND, DMAX and RSIGN */
/* > as described below. */
/* > */
/* > Grade the matrix, if desired, from the left and/or right */
/* > as specified by GRADE. The inputs DL, MODEL, CONDL, DR, */
/* > MODER and CONDR also determine the grading as described */
/* > below. */
/* > */
/* > Permute, if desired, the rows and/or columns as specified by */
/* > PIVTNG and IPIVOT. */
/* > */
/* > Set random entries to zero, if desired, to get a random sparse */
/* > matrix as specified by SPARSE. */
/* > */
/* > Make A a band matrix, if desired, by zeroing out the matrix */
/* > outside a band of lower bandwidth KL and upper bandwidth KU. */
/* > */
/* > Scale A, if desired, to have maximum entry ANORM. */
/* > */
/* > Pack the matrix if desired. Options specified by PACK are: */
/* > no packing */
/* > zero out upper half (if symmetric) */
/* > zero out lower half (if symmetric) */
/* > store the upper half columnwise (if symmetric or */
/* > square upper triangular) */
/* > store the lower half columnwise (if symmetric or */
/* > square lower triangular) */
/* > same as upper half rowwise if symmetric */
/* > store the lower triangle in banded format (if symmetric) */
/* > store the upper triangle in banded format (if symmetric) */
/* > store the entire matrix in banded format */
/* > */
/* > Note: If two calls to SLATMR differ only in the PACK parameter, */
/* > they will generate mathematically equivalent matrices. */
/* > */
/* > If two calls to SLATMR both have full bandwidth (KL = M-1 */
/* > and KU = N-1), and differ only in the PIVTNG and PACK */
/* > parameters, then the matrices generated will differ only */
/* > in the order of the rows and/or columns, and otherwise */
/* > contain the same data. This consistency cannot be and */
/* > is not maintained with less than full bandwidth. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > Number of rows of A. Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > Number of columns of A. Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] DIST */
/* > \verbatim */
/* > DIST is CHARACTER*1 */
/* > On entry, DIST specifies the type of distribution to be used */
/* > to generate a random matrix . */
/* > 'U' => UNIFORM( 0, 1 ) ( 'U' for uniform ) */
/* > 'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric ) */
/* > 'N' => NORMAL( 0, 1 ) ( 'N' for normal ) */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in,out] ISEED */
/* > \verbatim */
/* > ISEED is INTEGER array, dimension (4) */
/* > On entry ISEED specifies the seed of the random number */
/* > generator. They should lie between 0 and 4095 inclusive, */
/* > and ISEED(4) should be odd. The random number generator */
/* > uses a linear congruential sequence limited to small */
/* > integers, and so should produce machine independent */
/* > random numbers. The values of ISEED are changed on */
/* > exit, and can be used in the next call to SLATMR */
/* > to continue the same random number sequence. */
/* > Changed on exit. */
/* > \endverbatim */
/* > */
/* > \param[in] SYM */
/* > \verbatim */
/* > SYM is CHARACTER*1 */
/* > If SYM='S' or 'H', generated matrix is symmetric. */
/* > If SYM='N', generated matrix is nonsymmetric. */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] D */
/* > \verbatim */
/* > D is REAL array, dimension (f2cmin(M,N)) */
/* > On entry this array specifies the diagonal entries */
/* > of the diagonal of A. D may either be specified */
/* > on entry, or set according to MODE and COND as described */
/* > below. May be changed on exit if MODE is nonzero. */
/* > \endverbatim */
/* > */
/* > \param[in] MODE */
/* > \verbatim */
/* > MODE is INTEGER */
/* > On entry describes how D is to be used: */
/* > MODE = 0 means use D as input */
/* > MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND */
/* > MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND */
/* > MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) */
/* > MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) */
/* > MODE = 5 sets D to random numbers in the range */
/* > ( 1/COND , 1 ) such that their logarithms */
/* > are uniformly distributed. */
/* > MODE = 6 set D to random numbers from same distribution */
/* > as the rest of the matrix. */
/* > MODE < 0 has the same meaning as ABS(MODE), except that */
/* > the order of the elements of D is reversed. */
/* > Thus if MODE is positive, D has entries ranging from */
/* > 1 to 1/COND, if negative, from 1/COND to 1, */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] COND */
/* > \verbatim */
/* > COND is REAL */
/* > On entry, used as described under MODE above. */
/* > If used, it must be >= 1. Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] DMAX */
/* > \verbatim */
/* > DMAX is REAL */
/* > If MODE neither -6, 0 nor 6, the diagonal is scaled by */
/* > DMAX / f2cmax(abs(D(i))), so that maximum absolute entry */
/* > of diagonal is abs(DMAX). If DMAX is negative (or zero), */
/* > diagonal will be scaled by a negative number (or zero). */
/* > \endverbatim */
/* > */
/* > \param[in] RSIGN */
/* > \verbatim */
/* > RSIGN is CHARACTER*1 */
/* > If MODE neither -6, 0 nor 6, specifies sign of diagonal */
/* > as follows: */
/* > 'T' => diagonal entries are multiplied by 1 or -1 */
/* > with probability .5 */
/* > 'F' => diagonal unchanged */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] GRADE */
/* > \verbatim */
/* > GRADE is CHARACTER*1 */
/* > Specifies grading of matrix as follows: */
/* > 'N' => no grading */
/* > 'L' => matrix premultiplied by diag( DL ) */
/* > (only if matrix nonsymmetric) */
/* > 'R' => matrix postmultiplied by diag( DR ) */
/* > (only if matrix nonsymmetric) */
/* > 'B' => matrix premultiplied by diag( DL ) and */
/* > postmultiplied by diag( DR ) */
/* > (only if matrix nonsymmetric) */
/* > 'S' or 'H' => matrix premultiplied by diag( DL ) and */
/* > postmultiplied by diag( DL ) */
/* > ('S' for symmetric, or 'H' for Hermitian) */
/* > 'E' => matrix premultiplied by diag( DL ) and */
/* > postmultiplied by inv( diag( DL ) ) */
/* > ( 'E' for eigenvalue invariance) */
/* > (only if matrix nonsymmetric) */
/* > Note: if GRADE='E', then M must equal N. */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in,out] DL */
/* > \verbatim */
/* > DL is REAL array, dimension (M) */
/* > If MODEL=0, then on entry this array specifies the diagonal */
/* > entries of a diagonal matrix used as described under GRADE */
/* > above. If MODEL is not zero, then DL will be set according */
/* > to MODEL and CONDL, analogous to the way D is set according */
/* > to MODE and COND (except there is no DMAX parameter for DL). */
/* > If GRADE='E', then DL cannot have zero entries. */
/* > Not referenced if GRADE = 'N' or 'R'. Changed on exit. */
/* > \endverbatim */
/* > */
/* > \param[in] MODEL */
/* > \verbatim */
/* > MODEL is INTEGER */
/* > This specifies how the diagonal array DL is to be computed, */
/* > just as MODE specifies how D is to be computed. */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] CONDL */
/* > \verbatim */
/* > CONDL is REAL */
/* > When MODEL is not zero, this specifies the condition number */
/* > of the computed DL. Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in,out] DR */
/* > \verbatim */
/* > DR is REAL array, dimension (N) */
/* > If MODER=0, then on entry this array specifies the diagonal */
/* > entries of a diagonal matrix used as described under GRADE */
/* > above. If MODER is not zero, then DR will be set according */
/* > to MODER and CONDR, analogous to the way D is set according */
/* > to MODE and COND (except there is no DMAX parameter for DR). */
/* > Not referenced if GRADE = 'N', 'L', 'H', 'S' or 'E'. */
/* > Changed on exit. */
/* > \endverbatim */
/* > */
/* > \param[in] MODER */
/* > \verbatim */
/* > MODER is INTEGER */
/* > This specifies how the diagonal array DR is to be computed, */
/* > just as MODE specifies how D is to be computed. */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] CONDR */
/* > \verbatim */
/* > CONDR is REAL */
/* > When MODER is not zero, this specifies the condition number */
/* > of the computed DR. Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] PIVTNG */
/* > \verbatim */
/* > PIVTNG is CHARACTER*1 */
/* > On entry specifies pivoting permutations as follows: */
/* > 'N' or ' ' => none. */
/* > 'L' => left or row pivoting (matrix must be nonsymmetric). */
/* > 'R' => right or column pivoting (matrix must be */
/* > nonsymmetric). */
/* > 'B' or 'F' => both or full pivoting, i.e., on both sides. */
/* > In this case, M must equal N */
/* > */
/* > If two calls to SLATMR both have full bandwidth (KL = M-1 */
/* > and KU = N-1), and differ only in the PIVTNG and PACK */
/* > parameters, then the matrices generated will differ only */
/* > in the order of the rows and/or columns, and otherwise */
/* > contain the same data. This consistency cannot be */
/* > maintained with less than full bandwidth. */
/* > \endverbatim */
/* > */
/* > \param[in] IPIVOT */
/* > \verbatim */
/* > IPIVOT is INTEGER array, dimension (N or M) */
/* > This array specifies the permutation used. After the */
/* > basic matrix is generated, the rows, columns, or both */
/* > are permuted. If, say, row pivoting is selected, SLATMR */
/* > starts with the *last* row and interchanges the M-th and */
/* > IPIVOT(M)-th rows, then moves to the next-to-last row, */
/* > interchanging the (M-1)-th and the IPIVOT(M-1)-th rows, */
/* > and so on. In terms of "2-cycles", the permutation is */
/* > (1 IPIVOT(1)) (2 IPIVOT(2)) ... (M IPIVOT(M)) */
/* > where the rightmost cycle is applied first. This is the */
/* > *inverse* of the effect of pivoting in LINPACK. The idea */
/* > is that factoring (with pivoting) an identity matrix */
/* > which has been inverse-pivoted in this way should */
/* > result in a pivot vector identical to IPIVOT. */
/* > Not referenced if PIVTNG = 'N'. Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] KL */
/* > \verbatim */
/* > KL is INTEGER */
/* > On entry specifies the lower bandwidth of the matrix. For */
/* > example, KL=0 implies upper triangular, KL=1 implies upper */
/* > Hessenberg, and KL at least M-1 implies the matrix is not */
/* > banded. Must equal KU if matrix is symmetric. */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] KU */
/* > \verbatim */
/* > KU is INTEGER */
/* > On entry specifies the upper bandwidth of the matrix. For */
/* > example, KU=0 implies lower triangular, KU=1 implies lower */
/* > Hessenberg, and KU at least N-1 implies the matrix is not */
/* > banded. Must equal KL if matrix is symmetric. */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] SPARSE */
/* > \verbatim */
/* > SPARSE is REAL */
/* > On entry specifies the sparsity of the matrix if a sparse */
/* > matrix is to be generated. SPARSE should lie between */
/* > 0 and 1. To generate a sparse matrix, for each matrix entry */
/* > a uniform ( 0, 1 ) random number x is generated and */
/* > compared to SPARSE; if x is larger the matrix entry */
/* > is unchanged and if x is smaller the entry is set */
/* > to zero. Thus on the average a fraction SPARSE of the */
/* > entries will be set to zero. */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] ANORM */
/* > \verbatim */
/* > ANORM is REAL */
/* > On entry specifies maximum entry of output matrix */
/* > (output matrix will by multiplied by a constant so that */
/* > its largest absolute entry equal ANORM) */
/* > if ANORM is nonnegative. If ANORM is negative no scaling */
/* > is done. Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] PACK */
/* > \verbatim */
/* > PACK is CHARACTER*1 */
/* > On entry specifies packing of matrix as follows: */
/* > 'N' => no packing */
/* > 'U' => zero out all subdiagonal entries (if symmetric) */
/* > 'L' => zero out all superdiagonal entries (if symmetric) */
/* > 'C' => store the upper triangle columnwise */
/* > (only if matrix symmetric or square upper triangular) */
/* > 'R' => store the lower triangle columnwise */
/* > (only if matrix symmetric or square lower triangular) */
/* > (same as upper half rowwise if symmetric) */
/* > 'B' => store the lower triangle in band storage scheme */
/* > (only if matrix symmetric) */
/* > 'Q' => store the upper triangle in band storage scheme */
/* > (only if matrix symmetric) */
/* > 'Z' => store the entire matrix in band storage scheme */
/* > (pivoting can be provided for by using this */
/* > option to store A in the trailing rows of */
/* > the allocated storage) */
/* > */
/* > Using these options, the various LAPACK packed and banded */
/* > storage schemes can be obtained: */
/* > GB - use 'Z' */
/* > PB, SB or TB - use 'B' or 'Q' */
/* > PP, SP or TP - use 'C' or 'R' */
/* > */
/* > If two calls to SLATMR differ only in the PACK parameter, */
/* > they will generate mathematically equivalent matrices. */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is REAL array, dimension (LDA,N) */
/* > On exit A is the desired test matrix. Only those */
/* > entries of A which are significant on output */
/* > will be referenced (even if A is in packed or band */
/* > storage format). The 'unoccupied corners' of A in */
/* > band format will be zeroed out. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > on entry LDA specifies the first dimension of A as */
/* > declared in the calling program. */
/* > If PACK='N', 'U' or 'L', LDA must be at least f2cmax ( 1, M ). */
/* > If PACK='C' or 'R', LDA must be at least 1. */
/* > If PACK='B', or 'Q', LDA must be MIN ( KU+1, N ) */
/* > If PACK='Z', LDA must be at least KUU+KLL+1, where */
/* > KUU = MIN ( KU, N-1 ) and KLL = MIN ( KL, M-1 ) */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, dimension ( N or M) */
/* > Workspace. Not referenced if PIVTNG = 'N'. Changed on exit. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > Error parameter on exit: */
/* > 0 => normal return */
/* > -1 => M negative or unequal to N and SYM='S' or 'H' */
/* > -2 => N negative */
/* > -3 => DIST illegal string */
/* > -5 => SYM illegal string */
/* > -7 => MODE not in range -6 to 6 */
/* > -8 => COND less than 1.0, and MODE neither -6, 0 nor 6 */
/* > -10 => MODE neither -6, 0 nor 6 and RSIGN illegal string */
/* > -11 => GRADE illegal string, or GRADE='E' and */
/* > M not equal to N, or GRADE='L', 'R', 'B' or 'E' and */
/* > SYM = 'S' or 'H' */
/* > -12 => GRADE = 'E' and DL contains zero */
/* > -13 => MODEL not in range -6 to 6 and GRADE= 'L', 'B', 'H', */
/* > 'S' or 'E' */
/* > -14 => CONDL less than 1.0, GRADE='L', 'B', 'H', 'S' or 'E', */
/* > and MODEL neither -6, 0 nor 6 */
/* > -16 => MODER not in range -6 to 6 and GRADE= 'R' or 'B' */
/* > -17 => CONDR less than 1.0, GRADE='R' or 'B', and */
/* > MODER neither -6, 0 nor 6 */
/* > -18 => PIVTNG illegal string, or PIVTNG='B' or 'F' and */
/* > M not equal to N, or PIVTNG='L' or 'R' and SYM='S' */
/* > or 'H' */
/* > -19 => IPIVOT contains out of range number and */
/* > PIVTNG not equal to 'N' */
/* > -20 => KL negative */
/* > -21 => KU negative, or SYM='S' or 'H' and KU not equal to KL */
/* > -22 => SPARSE not in range 0. to 1. */
/* > -24 => PACK illegal string, or PACK='U', 'L', 'B' or 'Q' */
/* > and SYM='N', or PACK='C' and SYM='N' and either KL */
/* > not equal to 0 or N not equal to M, or PACK='R' and */
/* > SYM='N', and either KU not equal to 0 or N not equal */
/* > to M */
/* > -26 => LDA too small */
/* > 1 => Error return from SLATM1 (computing D) */
/* > 2 => Cannot scale diagonal to DMAX (f2cmax. entry is 0) */
/* > 3 => Error return from SLATM1 (computing DL) */
/* > 4 => Error return from SLATM1 (computing DR) */
/* > 5 => ANORM is positive, but matrix constructed prior to */
/* > attempting to scale it to have norm ANORM, is zero */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup real_matgen */
/* ===================================================================== */
/* Subroutine */ void slatmr_(integer *m, integer *n, char *dist, integer *
iseed, char *sym, real *d__, integer *mode, real *cond, real *dmax__,
char *rsign, char *grade, real *dl, integer *model, real *condl, real
*dr, integer *moder, real *condr, char *pivtng, integer *ipivot,
integer *kl, integer *ku, real *sparse, real *anorm, char *pack, real
*a, integer *lda, integer *iwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
real r__1, r__2, r__3;
/* Local variables */
integer isub, jsub;
real temp;
integer isym, i__, j, k;
real alpha;
integer ipack;
extern logical lsame_(char *, char *);
real tempa[1];
extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
integer iisub, idist, jjsub, mnmin;
logical dzero;
integer mnsub;
real onorm;
integer mxsub, npvts;
extern /* Subroutine */ void slatm1_(integer *, real *, integer *, integer
*, integer *, real *, integer *, integer *);
extern real slatm2_(integer *, integer *, integer *, integer *, integer *,
integer *, integer *, integer *, real *, integer *, real *, real
*, integer *, integer *, real *), slatm3_(integer *, integer *,
integer *, integer *, integer *, integer *, integer *, integer *,
integer *, integer *, real *, integer *, real *, real *, integer *
, integer *, real *);
integer igrade;
extern real slangb_(char *, integer *, integer *, integer *, real *,
integer *, real *), slange_(char *, integer *, integer *,
real *, integer *, real *);
logical fulbnd;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
logical badpvt;
extern real slansb_(char *, char *, integer *, integer *, real *, integer
*, real *);
integer irsign;
extern real slansp_(char *, char *, integer *, real *, real *);
integer ipvtng;
extern real slansy_(char *, char *, integer *, real *, integer *, real *);
integer kll, kuu;
/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* 1) Decode and Test the input parameters. */
/* Initialize flags & seed. */
/* Parameter adjustments */
--iseed;
--d__;
--dl;
--dr;
--ipivot;
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--iwork;
/* Function Body */
*info = 0;
/* Quick return if possible */
if (*m == 0 || *n == 0) {
return;
}
/* Decode DIST */
if (lsame_(dist, "U")) {
idist = 1;
} else if (lsame_(dist, "S")) {
idist = 2;
} else if (lsame_(dist, "N")) {
idist = 3;
} else {
idist = -1;
}
/* Decode SYM */
if (lsame_(sym, "S")) {
isym = 0;
} else if (lsame_(sym, "N")) {
isym = 1;
} else if (lsame_(sym, "H")) {
isym = 0;
} else {
isym = -1;
}
/* Decode RSIGN */
if (lsame_(rsign, "F")) {
irsign = 0;
} else if (lsame_(rsign, "T")) {
irsign = 1;
} else {
irsign = -1;
}
/* Decode PIVTNG */
if (lsame_(pivtng, "N")) {
ipvtng = 0;
} else if (lsame_(pivtng, " ")) {
ipvtng = 0;
} else if (lsame_(pivtng, "L")) {
ipvtng = 1;
npvts = *m;
} else if (lsame_(pivtng, "R")) {
ipvtng = 2;
npvts = *n;
} else if (lsame_(pivtng, "B")) {
ipvtng = 3;
npvts = f2cmin(*n,*m);
} else if (lsame_(pivtng, "F")) {
ipvtng = 3;
npvts = f2cmin(*n,*m);
} else {
ipvtng = -1;
}
/* Decode GRADE */
if (lsame_(grade, "N")) {
igrade = 0;
} else if (lsame_(grade, "L")) {
igrade = 1;
} else if (lsame_(grade, "R")) {
igrade = 2;
} else if (lsame_(grade, "B")) {
igrade = 3;
} else if (lsame_(grade, "E")) {
igrade = 4;
} else if (lsame_(grade, "H") || lsame_(grade,
"S")) {
igrade = 5;
} else {
igrade = -1;
}
/* Decode PACK */
if (lsame_(pack, "N")) {
ipack = 0;
} else if (lsame_(pack, "U")) {
ipack = 1;
} else if (lsame_(pack, "L")) {
ipack = 2;
} else if (lsame_(pack, "C")) {
ipack = 3;
} else if (lsame_(pack, "R")) {
ipack = 4;
} else if (lsame_(pack, "B")) {
ipack = 5;
} else if (lsame_(pack, "Q")) {
ipack = 6;
} else if (lsame_(pack, "Z")) {
ipack = 7;
} else {
ipack = -1;
}
/* Set certain internal parameters */
mnmin = f2cmin(*m,*n);
/* Computing MIN */
i__1 = *kl, i__2 = *m - 1;
kll = f2cmin(i__1,i__2);
/* Computing MIN */
i__1 = *ku, i__2 = *n - 1;
kuu = f2cmin(i__1,i__2);
/* If inv(DL) is used, check to see if DL has a zero entry. */
dzero = FALSE_;
if (igrade == 4 && *model == 0) {
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
if (dl[i__] == 0.f) {
dzero = TRUE_;
}
/* L10: */
}
}
/* Check values in IPIVOT */
badpvt = FALSE_;
if (ipvtng > 0) {
i__1 = npvts;
for (j = 1; j <= i__1; ++j) {
if (ipivot[j] <= 0 || ipivot[j] > npvts) {
badpvt = TRUE_;
}
/* L20: */
}
}
/* Set INFO if an error */
if (*m < 0) {
*info = -1;
} else if (*m != *n && isym == 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (idist == -1) {
*info = -3;
} else if (isym == -1) {
*info = -5;
} else if (*mode < -6 || *mode > 6) {
*info = -7;
} else if (*mode != -6 && *mode != 0 && *mode != 6 && *cond < 1.f) {
*info = -8;
} else if (*mode != -6 && *mode != 0 && *mode != 6 && irsign == -1) {
*info = -10;
} else if (igrade == -1 || igrade == 4 && *m != *n || igrade >= 1 &&
igrade <= 4 && isym == 0) {
*info = -11;
} else if (igrade == 4 && dzero) {
*info = -12;
} else if ((igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5) && (
*model < -6 || *model > 6)) {
*info = -13;
} else if ((igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5) && (
*model != -6 && *model != 0 && *model != 6) && *condl < 1.f) {
*info = -14;
} else if ((igrade == 2 || igrade == 3) && (*moder < -6 || *moder > 6)) {
*info = -16;
} else if ((igrade == 2 || igrade == 3) && (*moder != -6 && *moder != 0 &&
*moder != 6) && *condr < 1.f) {
*info = -17;
} else if (ipvtng == -1 || ipvtng == 3 && *m != *n || (ipvtng == 1 ||
ipvtng == 2) && isym == 0) {
*info = -18;
} else if (ipvtng != 0 && badpvt) {
*info = -19;
} else if (*kl < 0) {
*info = -20;
} else if (*ku < 0 || isym == 0 && *kl != *ku) {
*info = -21;
} else if (*sparse < 0.f || *sparse > 1.f) {
*info = -22;
} else if (ipack == -1 || (ipack == 1 || ipack == 2 || ipack == 5 ||
ipack == 6) && isym == 1 || ipack == 3 && isym == 1 && (*kl != 0
|| *m != *n) || ipack == 4 && isym == 1 && (*ku != 0 || *m != *n))
{
*info = -24;
} else if ((ipack == 0 || ipack == 1 || ipack == 2) && *lda < f2cmax(1,*m) ||
(ipack == 3 || ipack == 4) && *lda < 1 || (ipack == 5 || ipack ==
6) && *lda < kuu + 1 || ipack == 7 && *lda < kll + kuu + 1) {
*info = -26;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SLATMR", &i__1, 6);
return;
}
/* Decide if we can pivot consistently */
fulbnd = FALSE_;
if (kuu == *n - 1 && kll == *m - 1) {
fulbnd = TRUE_;
}
/* Initialize random number generator */
for (i__ = 1; i__ <= 4; ++i__) {
iseed[i__] = (i__1 = iseed[i__], abs(i__1)) % 4096;
/* L30: */
}
iseed[4] = (iseed[4] / 2 << 1) + 1;
/* 2) Set up D, DL, and DR, if indicated. */
/* Compute D according to COND and MODE */
slatm1_(mode, cond, &irsign, &idist, &iseed[1], &d__[1], &mnmin, info);
if (*info != 0) {
*info = 1;
return;
}
if (*mode != 0 && *mode != -6 && *mode != 6) {
/* Scale by DMAX */
temp = abs(d__[1]);
i__1 = mnmin;
for (i__ = 2; i__ <= i__1; ++i__) {
/* Computing MAX */
r__2 = temp, r__3 = (r__1 = d__[i__], abs(r__1));
temp = f2cmax(r__2,r__3);
/* L40: */
}
if (temp == 0.f && *dmax__ != 0.f) {
*info = 2;
return;
}
if (temp != 0.f) {
alpha = *dmax__ / temp;
} else {
alpha = 1.f;
}
i__1 = mnmin;
for (i__ = 1; i__ <= i__1; ++i__) {
d__[i__] = alpha * d__[i__];
/* L50: */
}
}
/* Compute DL if grading set */
if (igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5) {
slatm1_(model, condl, &c__0, &idist, &iseed[1], &dl[1], m, info);
if (*info != 0) {
*info = 3;
return;
}
}
/* Compute DR if grading set */
if (igrade == 2 || igrade == 3) {
slatm1_(moder, condr, &c__0, &idist, &iseed[1], &dr[1], n, info);
if (*info != 0) {
*info = 4;
return;
}
}
/* 3) Generate IWORK if pivoting */
if (ipvtng > 0) {
i__1 = npvts;
for (i__ = 1; i__ <= i__1; ++i__) {
iwork[i__] = i__;
/* L60: */
}
if (fulbnd) {
i__1 = npvts;
for (i__ = 1; i__ <= i__1; ++i__) {
k = ipivot[i__];
j = iwork[i__];
iwork[i__] = iwork[k];
iwork[k] = j;
/* L70: */
}
} else {
for (i__ = npvts; i__ >= 1; --i__) {
k = ipivot[i__];
j = iwork[i__];
iwork[i__] = iwork[k];
iwork[k] = j;
/* L80: */
}
}
}
/* 4) Generate matrices for each kind of PACKing */
/* Always sweep matrix columnwise (if symmetric, upper */
/* half only) so that matrix generated does not depend */
/* on PACK */
if (fulbnd) {
/* Use SLATM3 so matrices generated with differing PIVOTing only */
/* differ only in the order of their rows and/or columns. */
if (ipack == 0) {
if (isym == 0) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
temp = slatm3_(m, n, &i__, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d__[1], &igrade, &dl[1], &
dr[1], &ipvtng, &iwork[1], sparse);
a[isub + jsub * a_dim1] = temp;
a[jsub + isub * a_dim1] = temp;
/* L90: */
}
/* L100: */
}
} else if (isym == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp = slatm3_(m, n, &i__, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d__[1], &igrade, &dl[1], &
dr[1], &ipvtng, &iwork[1], sparse);
a[isub + jsub * a_dim1] = temp;
/* L110: */
}
/* L120: */
}
}
} else if (ipack == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
temp = slatm3_(m, n, &i__, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
, &ipvtng, &iwork[1], sparse);
mnsub = f2cmin(isub,jsub);
mxsub = f2cmax(isub,jsub);
a[mnsub + mxsub * a_dim1] = temp;
if (mnsub != mxsub) {
a[mxsub + mnsub * a_dim1] = 0.f;
}
/* L130: */
}
/* L140: */
}
} else if (ipack == 2) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
temp = slatm3_(m, n, &i__, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
, &ipvtng, &iwork[1], sparse);
mnsub = f2cmin(isub,jsub);
mxsub = f2cmax(isub,jsub);
a[mxsub + mnsub * a_dim1] = temp;
if (mnsub != mxsub) {
a[mnsub + mxsub * a_dim1] = 0.f;
}
/* L150: */
}
/* L160: */
}
} else if (ipack == 3) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
temp = slatm3_(m, n, &i__, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
, &ipvtng, &iwork[1], sparse);
/* Compute K = location of (ISUB,JSUB) entry in packed */
/* array */
mnsub = f2cmin(isub,jsub);
mxsub = f2cmax(isub,jsub);
k = mxsub * (mxsub - 1) / 2 + mnsub;
/* Convert K to (IISUB,JJSUB) location */
jjsub = (k - 1) / *lda + 1;
iisub = k - *lda * (jjsub - 1);
a[iisub + jjsub * a_dim1] = temp;
/* L170: */
}
/* L180: */
}
} else if (ipack == 4) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
temp = slatm3_(m, n, &i__, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
, &ipvtng, &iwork[1], sparse);
/* Compute K = location of (I,J) entry in packed array */
mnsub = f2cmin(isub,jsub);
mxsub = f2cmax(isub,jsub);
if (mnsub == 1) {
k = mxsub;
} else {
k = *n * (*n + 1) / 2 - (*n - mnsub + 1) * (*n -
mnsub + 2) / 2 + mxsub - mnsub + 1;
}
/* Convert K to (IISUB,JJSUB) location */
jjsub = (k - 1) / *lda + 1;
iisub = k - *lda * (jjsub - 1);
a[iisub + jjsub * a_dim1] = temp;
/* L190: */
}
/* L200: */
}
} else if (ipack == 5) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = j - kuu; i__ <= i__2; ++i__) {
if (i__ < 1) {
a[j - i__ + 1 + (i__ + *n) * a_dim1] = 0.f;
} else {
temp = slatm3_(m, n, &i__, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d__[1], &igrade, &dl[1], &
dr[1], &ipvtng, &iwork[1], sparse);
mnsub = f2cmin(isub,jsub);
mxsub = f2cmax(isub,jsub);
a[mxsub - mnsub + 1 + mnsub * a_dim1] = temp;
}
/* L210: */
}
/* L220: */
}
} else if (ipack == 6) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = j - kuu; i__ <= i__2; ++i__) {
temp = slatm3_(m, n, &i__, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
, &ipvtng, &iwork[1], sparse);
mnsub = f2cmin(isub,jsub);
mxsub = f2cmax(isub,jsub);
a[mnsub - mxsub + kuu + 1 + mxsub * a_dim1] = temp;
/* L230: */
}
/* L240: */
}
} else if (ipack == 7) {
if (isym == 0) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = j - kuu; i__ <= i__2; ++i__) {
temp = slatm3_(m, n, &i__, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d__[1], &igrade, &dl[1], &
dr[1], &ipvtng, &iwork[1], sparse);
mnsub = f2cmin(isub,jsub);
mxsub = f2cmax(isub,jsub);
a[mnsub - mxsub + kuu + 1 + mxsub * a_dim1] = temp;
if (i__ < 1) {
a[j - i__ + 1 + kuu + (i__ + *n) * a_dim1] = 0.f;
}
if (i__ >= 1 && mnsub != mxsub) {
a[mxsub - mnsub + 1 + kuu + mnsub * a_dim1] =
temp;
}
/* L250: */
}
/* L260: */
}
} else if (isym == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j + kll;
for (i__ = j - kuu; i__ <= i__2; ++i__) {
temp = slatm3_(m, n, &i__, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d__[1], &igrade, &dl[1], &
dr[1], &ipvtng, &iwork[1], sparse);
a[isub - jsub + kuu + 1 + jsub * a_dim1] = temp;
/* L270: */
}
/* L280: */
}
}
}
} else {
/* Use SLATM2 */
if (ipack == 0) {
if (isym == 0) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] = slatm2_(m, n, &i__, &j, kl, ku,
&idist, &iseed[1], &d__[1], &igrade, &dl[1], &
dr[1], &ipvtng, &iwork[1], sparse);
a[j + i__ * a_dim1] = a[i__ + j * a_dim1];
/* L290: */
}
/* L300: */
}
} else if (isym == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] = slatm2_(m, n, &i__, &j, kl, ku,
&idist, &iseed[1], &d__[1], &igrade, &dl[1], &
dr[1], &ipvtng, &iwork[1], sparse);
/* L310: */
}
/* L320: */
}
}
} else if (ipack == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] = slatm2_(m, n, &i__, &j, kl, ku, &
idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
, &ipvtng, &iwork[1], sparse);
if (i__ != j) {
a[j + i__ * a_dim1] = 0.f;
}
/* L330: */
}
/* L340: */
}
} else if (ipack == 2) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
a[j + i__ * a_dim1] = slatm2_(m, n, &i__, &j, kl, ku, &
idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
, &ipvtng, &iwork[1], sparse);
if (i__ != j) {
a[i__ + j * a_dim1] = 0.f;
}
/* L350: */
}
/* L360: */
}
} else if (ipack == 3) {
isub = 0;
jsub = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
++isub;
if (isub > *lda) {
isub = 1;
++jsub;
}
a[isub + jsub * a_dim1] = slatm2_(m, n, &i__, &j, kl, ku,
&idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[
1], &ipvtng, &iwork[1], sparse);
/* L370: */
}
/* L380: */
}
} else if (ipack == 4) {
if (isym == 0) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
/* Compute K = location of (I,J) entry in packed array */
if (i__ == 1) {
k = j;
} else {
k = *n * (*n + 1) / 2 - (*n - i__ + 1) * (*n -
i__ + 2) / 2 + j - i__ + 1;
}
/* Convert K to (ISUB,JSUB) location */
jsub = (k - 1) / *lda + 1;
isub = k - *lda * (jsub - 1);
a[isub + jsub * a_dim1] = slatm2_(m, n, &i__, &j, kl,
ku, &idist, &iseed[1], &d__[1], &igrade, &dl[
1], &dr[1], &ipvtng, &iwork[1], sparse);
/* L390: */
}
/* L400: */
}
} else {
isub = 0;
jsub = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = j; i__ <= i__2; ++i__) {
++isub;
if (isub > *lda) {
isub = 1;
++jsub;
}
a[isub + jsub * a_dim1] = slatm2_(m, n, &i__, &j, kl,
ku, &idist, &iseed[1], &d__[1], &igrade, &dl[
1], &dr[1], &ipvtng, &iwork[1], sparse);
/* L410: */
}
/* L420: */
}
}
} else if (ipack == 5) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = j - kuu; i__ <= i__2; ++i__) {
if (i__ < 1) {
a[j - i__ + 1 + (i__ + *n) * a_dim1] = 0.f;
} else {
a[j - i__ + 1 + i__ * a_dim1] = slatm2_(m, n, &i__, &
j, kl, ku, &idist, &iseed[1], &d__[1], &
igrade, &dl[1], &dr[1], &ipvtng, &iwork[1],
sparse);
}
/* L430: */
}
/* L440: */
}
} else if (ipack == 6) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = j - kuu; i__ <= i__2; ++i__) {
a[i__ - j + kuu + 1 + j * a_dim1] = slatm2_(m, n, &i__, &
j, kl, ku, &idist, &iseed[1], &d__[1], &igrade, &
dl[1], &dr[1], &ipvtng, &iwork[1], sparse);
/* L450: */
}
/* L460: */
}
} else if (ipack == 7) {
if (isym == 0) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = j - kuu; i__ <= i__2; ++i__) {
a[i__ - j + kuu + 1 + j * a_dim1] = slatm2_(m, n, &
i__, &j, kl, ku, &idist, &iseed[1], &d__[1], &
igrade, &dl[1], &dr[1], &ipvtng, &iwork[1],
sparse);
if (i__ < 1) {
a[j - i__ + 1 + kuu + (i__ + *n) * a_dim1] = 0.f;
}
if (i__ >= 1 && i__ != j) {
a[j - i__ + 1 + kuu + i__ * a_dim1] = a[i__ - j +
kuu + 1 + j * a_dim1];
}
/* L470: */
}
/* L480: */
}
} else if (isym == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j + kll;
for (i__ = j - kuu; i__ <= i__2; ++i__) {
a[i__ - j + kuu + 1 + j * a_dim1] = slatm2_(m, n, &
i__, &j, kl, ku, &idist, &iseed[1], &d__[1], &
igrade, &dl[1], &dr[1], &ipvtng, &iwork[1],
sparse);
/* L490: */
}
/* L500: */
}
}
}
}
/* 5) Scaling the norm */
if (ipack == 0) {
onorm = slange_("M", m, n, &a[a_offset], lda, tempa);
} else if (ipack == 1) {
onorm = slansy_("M", "U", n, &a[a_offset], lda, tempa);
} else if (ipack == 2) {
onorm = slansy_("M", "L", n, &a[a_offset], lda, tempa);
} else if (ipack == 3) {
onorm = slansp_("M", "U", n, &a[a_offset], tempa);
} else if (ipack == 4) {
onorm = slansp_("M", "L", n, &a[a_offset], tempa);
} else if (ipack == 5) {
onorm = slansb_("M", "L", n, &kll, &a[a_offset], lda, tempa);
} else if (ipack == 6) {
onorm = slansb_("M", "U", n, &kuu, &a[a_offset], lda, tempa);
} else if (ipack == 7) {
onorm = slangb_("M", n, &kll, &kuu, &a[a_offset], lda, tempa);
}
if (*anorm >= 0.f) {
if (*anorm > 0.f && onorm == 0.f) {
/* Desired scaling impossible */
*info = 5;
return;
} else if (*anorm > 1.f && onorm < 1.f || *anorm < 1.f && onorm > 1.f)
{
/* Scale carefully to avoid over / underflow */
if (ipack <= 2) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
r__1 = 1.f / onorm;
sscal_(m, &r__1, &a[j * a_dim1 + 1], &c__1);
sscal_(m, anorm, &a[j * a_dim1 + 1], &c__1);
/* L510: */
}
} else if (ipack == 3 || ipack == 4) {
i__1 = *n * (*n + 1) / 2;
r__1 = 1.f / onorm;
sscal_(&i__1, &r__1, &a[a_offset], &c__1);
i__1 = *n * (*n + 1) / 2;
sscal_(&i__1, anorm, &a[a_offset], &c__1);
} else if (ipack >= 5) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = kll + kuu + 1;
r__1 = 1.f / onorm;
sscal_(&i__2, &r__1, &a[j * a_dim1 + 1], &c__1);
i__2 = kll + kuu + 1;
sscal_(&i__2, anorm, &a[j * a_dim1 + 1], &c__1);
/* L520: */
}
}
} else {
/* Scale straightforwardly */
if (ipack <= 2) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
r__1 = *anorm / onorm;
sscal_(m, &r__1, &a[j * a_dim1 + 1], &c__1);
/* L530: */
}
} else if (ipack == 3 || ipack == 4) {
i__1 = *n * (*n + 1) / 2;
r__1 = *anorm / onorm;
sscal_(&i__1, &r__1, &a[a_offset], &c__1);
} else if (ipack >= 5) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = kll + kuu + 1;
r__1 = *anorm / onorm;
sscal_(&i__2, &r__1, &a[j * a_dim1 + 1], &c__1);
/* L540: */
}
}
}
}
/* End of SLATMR */
return;
} /* slatmr_ */