174 lines
6.3 KiB
C
174 lines
6.3 KiB
C
/***************************************************************************
|
|
Copyright (c) 2020, The OpenBLAS Project
|
|
All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
3. Neither the name of the OpenBLAS project nor the names of
|
|
its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
|
|
#include "common.h"
|
|
#if !defined(DOUBLE)
|
|
#define VSETVL(n) vsetvl_e32m4(n)
|
|
#define FLOAT_V_T vfloat32m4_t
|
|
#define VLEV_FLOAT vle32_v_f32m4
|
|
#define VLSEV_FLOAT vlse32_v_f32m4
|
|
#define VSEV_FLOAT vse32_v_f32m4
|
|
#define VSSEV_FLOAT vsse32_v_f32m4
|
|
#define VFMACCVF_FLOAT vfmacc_vf_f32m4
|
|
#define VFNMSACVF_FLOAT vfnmsac_vf_f32m4
|
|
#else
|
|
#define VSETVL(n) vsetvl_e64m4(n)
|
|
#define FLOAT_V_T vfloat64m4_t
|
|
#define VLEV_FLOAT vle64_v_f64m4
|
|
#define VLSEV_FLOAT vlse64_v_f64m4
|
|
#define VSEV_FLOAT vse64_v_f64m4
|
|
#define VSSEV_FLOAT vsse64_v_f64m4
|
|
#define VFMACCVF_FLOAT vfmacc_vf_f64m4
|
|
#define VFNMSACVF_FLOAT vfnmsac_vf_f64m4
|
|
#endif
|
|
|
|
int CNAME(BLASLONG m, BLASLONG n, BLASLONG dummy1, FLOAT alpha_r, FLOAT alpha_i, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y, FLOAT *buffer)
|
|
{
|
|
BLASLONG i = 0, j = 0, k = 0;
|
|
BLASLONG ix = 0, iy = 0;
|
|
FLOAT *a_ptr = a;
|
|
FLOAT temp_r = 0.0, temp_i = 0.0;
|
|
FLOAT_V_T va0, va1, vy0, vy1;
|
|
unsigned int gvl = 0;
|
|
BLASLONG stride_a = sizeof(FLOAT) * 2;
|
|
BLASLONG stride_y = inc_y * sizeof(FLOAT) * 2;
|
|
gvl = VSETVL(m);
|
|
BLASLONG inc_yv = inc_y * gvl * 2;
|
|
BLASLONG inc_x2 = inc_x * 2;
|
|
BLASLONG lda2 = lda * 2;
|
|
for(k=0,j=0; k<m/gvl; k++){
|
|
a_ptr = a;
|
|
ix = 0;
|
|
vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl);
|
|
vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl);
|
|
for(i = 0; i < n; i++){
|
|
#if !defined(XCONJ)
|
|
temp_r = alpha_r * x[ix] - alpha_i * x[ix+1];
|
|
temp_i = alpha_r * x[ix+1] + alpha_i * x[ix];
|
|
#else
|
|
temp_r = alpha_r * x[ix] + alpha_i * x[ix+1];
|
|
temp_i = alpha_r * x[ix+1] - alpha_i * x[ix];
|
|
#endif
|
|
|
|
va0 = VLSEV_FLOAT(&a_ptr[j], stride_a, gvl);
|
|
va1 = VLSEV_FLOAT(&a_ptr[j+1], stride_a, gvl);
|
|
#if !defined(CONJ)
|
|
#if !defined(XCONJ)
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl);
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_i, va1, gvl);
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_r, va1, gvl);
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_i, va0, gvl);
|
|
#else
|
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl);
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_i, va1, gvl);
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_r, va1, gvl);
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_i, va0, gvl);
|
|
#endif
|
|
|
|
#else
|
|
|
|
#if !defined(XCONJ)
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl);
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_i, va1, gvl);
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_r, va1, gvl);
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_i, va0, gvl);
|
|
#else
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl);
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_i, va1, gvl);
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_r, va1, gvl);
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_i, va0, gvl);
|
|
#endif
|
|
|
|
#endif
|
|
a_ptr += lda2;
|
|
ix += inc_x2;
|
|
}
|
|
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl);
|
|
VSSEV_FLOAT(&y[iy+1], stride_y, vy1, gvl);
|
|
j += gvl * 2;
|
|
iy += inc_yv;
|
|
}
|
|
//tail
|
|
if(j/2 < m){
|
|
gvl = VSETVL(m-j/2);
|
|
a_ptr = a;
|
|
ix = 0;
|
|
vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl);
|
|
vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl);
|
|
for(i = 0; i < n; i++){
|
|
#if !defined(XCONJ)
|
|
temp_r = alpha_r * x[ix] - alpha_i * x[ix+1];
|
|
temp_i = alpha_r * x[ix+1] + alpha_i * x[ix];
|
|
#else
|
|
temp_r = alpha_r * x[ix] + alpha_i * x[ix+1];
|
|
temp_i = alpha_r * x[ix+1] - alpha_i * x[ix];
|
|
#endif
|
|
|
|
va0 = VLSEV_FLOAT(&a_ptr[j], stride_a, gvl);
|
|
va1 = VLSEV_FLOAT(&a_ptr[j+1], stride_a, gvl);
|
|
#if !defined(CONJ)
|
|
|
|
#if !defined(XCONJ)
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl);
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_i, va1, gvl);
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_r, va1, gvl);
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_i, va0, gvl);
|
|
#else
|
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl);
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_i, va1, gvl);
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_r, va1, gvl);
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_i, va0, gvl);
|
|
#endif
|
|
|
|
#else
|
|
|
|
#if !defined(XCONJ)
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl);
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_i, va1, gvl);
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_r, va1, gvl);
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_i, va0, gvl);
|
|
#else
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl);
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_i, va1, gvl);
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_r, va1, gvl);
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_i, va0, gvl);
|
|
#endif
|
|
|
|
#endif
|
|
a_ptr += lda2;
|
|
ix += inc_x2;
|
|
}
|
|
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl);
|
|
VSSEV_FLOAT(&y[iy+1], stride_y, vy1, gvl);
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
|