377 lines
21 KiB
C
377 lines
21 KiB
C
/***************************************************************************
|
|
Copyright (c) 2020, The OpenBLAS Project
|
|
All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
3. Neither the name of the OpenBLAS project nor the names of
|
|
its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
|
|
#include "common.h"
|
|
|
|
#if !defined(DOUBLE)
|
|
#define VSETVL(n) vsetvl_e32m4(n)
|
|
#define FLOAT_V_T vfloat32m4_t
|
|
#define VLEV_FLOAT vle32_v_f32m4
|
|
#define VLSEV_FLOAT vlse32_v_f32m4
|
|
#define VSEV_FLOAT vse32_v_f32m4
|
|
#define VSSEV_FLOAT vsse32_v_f32m4
|
|
#define VFMACCVF_FLOAT vfmacc_vf_f32m4
|
|
#define VFMVVF_FLOAT vfmv_v_f_f32m4
|
|
#define VFMULVF_FLOAT vfmul_vf_f32m4
|
|
#else
|
|
#define VSETVL(n) vsetvl_e64m4(n)
|
|
#define FLOAT_V_T vfloat64m4_t
|
|
#define VLEV_FLOAT vle64_v_f64m4
|
|
#define VLSEV_FLOAT vlse64_v_f64m4
|
|
#define VSEV_FLOAT vse64_v_f64m4
|
|
#define VSSEV_FLOAT vsse64_v_f64m4
|
|
#define VFMACCVF_FLOAT vfmacc_vf_f64m4
|
|
#define VFMVVF_FLOAT vfmv_v_f_f64m4
|
|
#define VFMULVF_FLOAT vfmul_vf_f64m4
|
|
#endif
|
|
|
|
int CNAME(BLASLONG n, FLOAT alpha, FLOAT *x, BLASLONG inc_x, FLOAT beta, FLOAT *y, BLASLONG inc_y)
|
|
{
|
|
if (n < 0) return(0);
|
|
|
|
BLASLONG i=0, j=0;
|
|
unsigned int gvl = 0;
|
|
FLOAT_V_T vx0, vx1;
|
|
FLOAT_V_T vy0, vy1;
|
|
|
|
BLASLONG stride_x, stride_y, ix = 0, iy = 0;
|
|
|
|
if(beta == 0.0){
|
|
if(alpha == 0.0){//alpha == 0 && beta == 0
|
|
if(inc_y == 1){
|
|
gvl = VSETVL(n);
|
|
if(gvl <= n/2){
|
|
vy0 = VFMVVF_FLOAT(0.0, gvl);
|
|
for(i=0,j=0;i<n/(gvl*2);i++){
|
|
VSEV_FLOAT(&y[j], vy0, gvl);
|
|
VSEV_FLOAT(&y[j+gvl], vy0, gvl);
|
|
j += gvl * 2;
|
|
}
|
|
}
|
|
for(;j<n;){
|
|
gvl = VSETVL(n-j);
|
|
vy0 = VFMVVF_FLOAT(0.0, gvl);
|
|
VSEV_FLOAT(&y[j], vy0, gvl);
|
|
j += gvl;
|
|
}
|
|
}else{
|
|
gvl = VSETVL(n);
|
|
stride_y = inc_y * sizeof(FLOAT);
|
|
if(gvl <= n/2){
|
|
vy0 = VFMVVF_FLOAT(0.0, gvl);
|
|
BLASLONG inc_yv = inc_y * gvl;
|
|
for(i=0,j=0;i<n/(gvl*2);i++){
|
|
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl);
|
|
VSSEV_FLOAT(&y[iy+inc_yv], stride_y, vy0, gvl);
|
|
j += gvl * 2;
|
|
iy += inc_yv * 2;
|
|
}
|
|
}
|
|
for(;j<n;){
|
|
gvl = VSETVL(n-j);
|
|
vy0 = VFMVVF_FLOAT(0.0, gvl);
|
|
VSSEV_FLOAT(&y[j*inc_y], stride_y, vy0, gvl);
|
|
j += gvl;
|
|
}
|
|
}
|
|
|
|
}else{//alpha != 0 && beta == 0, y = ax
|
|
if(inc_x == 1 && inc_y == 1){
|
|
gvl = VSETVL(n);
|
|
if(gvl <= n/2){
|
|
for(i=0,j=0;i<n/(2*gvl);i++){
|
|
vx0 = VLEV_FLOAT(&x[j], gvl);
|
|
vy0 = VFMULVF_FLOAT(vx0, alpha, gvl);
|
|
VSEV_FLOAT(&y[j], vy0, gvl);
|
|
|
|
vx1 = VLEV_FLOAT(&x[j+gvl], gvl);
|
|
vy1 = VFMULVF_FLOAT(vx1, alpha, gvl);
|
|
VSEV_FLOAT(&y[j+gvl], vy1, gvl);
|
|
j += gvl * 2;
|
|
}
|
|
}
|
|
for(;j<n;){
|
|
gvl = VSETVL(n-j);
|
|
vx0 = VLEV_FLOAT(&x[j], gvl);
|
|
vy0 = VFMULVF_FLOAT(vx0, alpha, gvl);
|
|
VSEV_FLOAT(&y[j], vy0, gvl);
|
|
j += gvl;
|
|
}
|
|
}else if(inc_y == 1){
|
|
gvl = VSETVL(n);
|
|
stride_x = inc_x * sizeof(FLOAT);
|
|
if(gvl <= n/2){
|
|
BLASLONG inc_xv = inc_x * gvl;
|
|
for(i=0,j=0;i<n/(2*gvl);i++){
|
|
vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl);
|
|
vy0 = VFMULVF_FLOAT(vx0, alpha, gvl);
|
|
VSEV_FLOAT(&y[j], vy0, gvl);
|
|
|
|
vx1 = VLSEV_FLOAT(&x[ix+inc_xv], stride_x, gvl);
|
|
vy1 = VFMULVF_FLOAT(vx1, alpha, gvl);
|
|
VSEV_FLOAT(&y[j+gvl], vy1, gvl);
|
|
j += gvl * 2;
|
|
ix += inc_xv * 2;
|
|
}
|
|
}
|
|
for(;j<n;){
|
|
gvl = VSETVL(n-j);
|
|
vx0 = VLSEV_FLOAT(&x[j*inc_x], stride_x, gvl);
|
|
vy0 = VFMULVF_FLOAT(vx0, alpha, gvl);
|
|
VSEV_FLOAT(&y[j], vy0, gvl);
|
|
j += gvl;
|
|
}
|
|
}else if(inc_x == 1){
|
|
gvl = VSETVL(n);
|
|
stride_y = inc_y * sizeof(FLOAT);
|
|
if(gvl <= n/2){
|
|
BLASLONG inc_yv = inc_y * gvl;
|
|
for(i=0,j=0;i<n/(2*gvl);i++){
|
|
vx0 = VLEV_FLOAT(&x[j], gvl);
|
|
vy0 = VFMULVF_FLOAT(vx0, alpha, gvl);
|
|
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl);
|
|
|
|
vx1 = VLEV_FLOAT(&x[j+gvl], gvl);
|
|
vy1 = VFMULVF_FLOAT(vx1, alpha, gvl);
|
|
VSSEV_FLOAT(&y[iy+inc_yv], stride_y, vy1, gvl);
|
|
j += gvl * 2;
|
|
iy += inc_yv * 2;
|
|
}
|
|
}
|
|
for(;j<n;){
|
|
gvl = VSETVL(n-j);
|
|
vx0 = VLEV_FLOAT(&x[j], gvl);
|
|
vy0 = VFMULVF_FLOAT(vx0, alpha, gvl);
|
|
VSSEV_FLOAT(&y[j*inc_y], stride_y, vy0, gvl);
|
|
j += gvl;
|
|
}
|
|
}else{//inc_x !=1 && inc_y != 1
|
|
gvl = VSETVL(n);
|
|
stride_x = inc_x * sizeof(FLOAT);
|
|
stride_y = inc_y * sizeof(FLOAT);
|
|
if(gvl <= n/2){
|
|
BLASLONG inc_xv = inc_x * gvl;
|
|
BLASLONG inc_yv = inc_y * gvl;
|
|
for(i=0,j=0;i<n/(2*gvl);i++){
|
|
vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl);
|
|
vy0 = VFMULVF_FLOAT(vx0, alpha, gvl);
|
|
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl);
|
|
|
|
vx1 = VLSEV_FLOAT(&x[ix+inc_xv], stride_x, gvl);
|
|
vy1 = VFMULVF_FLOAT(vx1, alpha, gvl);
|
|
VSSEV_FLOAT(&y[iy+inc_yv], stride_y, vy1, gvl);
|
|
j += gvl * 2;
|
|
ix += inc_xv * 2;
|
|
iy += inc_yv * 2;
|
|
}
|
|
}
|
|
for(;j<n;){
|
|
gvl = VSETVL(n-j);
|
|
vx0 = VLSEV_FLOAT(&x[j*inc_x], stride_x, gvl);
|
|
vy0 = VFMULVF_FLOAT(vx0, alpha, gvl);
|
|
VSSEV_FLOAT(&y[j*inc_y], stride_y, vy0, gvl);
|
|
j += gvl;
|
|
}
|
|
}
|
|
}
|
|
}else{//beta != 0
|
|
if(alpha == 0.0){//alpha == 0 && beta != 0; y = by
|
|
if(inc_y == 1){
|
|
gvl = VSETVL(n);
|
|
if(gvl <= n/2){
|
|
for(i=0,j=0;i<n/(2*gvl);i++){
|
|
vy0 = VLEV_FLOAT(&y[j], gvl);
|
|
vy0 = VFMULVF_FLOAT(vy0, beta, gvl);
|
|
VSEV_FLOAT(&y[j], vy0, gvl);
|
|
|
|
vy1 = VLEV_FLOAT(&y[j+gvl], gvl);
|
|
vy1 = VFMULVF_FLOAT(vy1, beta, gvl);
|
|
VSEV_FLOAT(&y[j+gvl], vy1, gvl);
|
|
j += gvl * 2;
|
|
}
|
|
}
|
|
for(;j<n;){
|
|
gvl = VSETVL(n-j);
|
|
vy0 = VLEV_FLOAT(&y[j], gvl);
|
|
vy0 = VFMULVF_FLOAT(vy0, beta, gvl);
|
|
VSEV_FLOAT(&y[j], vy0, gvl);
|
|
j += gvl;
|
|
}
|
|
}else{
|
|
gvl = VSETVL(n);
|
|
stride_y = inc_y * sizeof(FLOAT);
|
|
if(gvl <= n/2){
|
|
BLASLONG inc_yv = inc_y * gvl;
|
|
for(i=0,j=0;i<n/(2*gvl);i++){
|
|
vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl);
|
|
vy0 = VFMULVF_FLOAT(vy0, beta, gvl);
|
|
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl);
|
|
|
|
vy1 = VLSEV_FLOAT(&y[iy+inc_yv], stride_y, gvl);
|
|
vy1 = VFMULVF_FLOAT(vy1, beta, gvl);
|
|
VSSEV_FLOAT(&y[iy+inc_yv], stride_y, vy1, gvl);
|
|
j += gvl * 2;
|
|
iy += inc_yv * 2;
|
|
}
|
|
}
|
|
for(;j<n;){
|
|
gvl = VSETVL(n-j);
|
|
vy0 = VLSEV_FLOAT(&y[j*inc_y], stride_y, gvl);
|
|
vy0 = VFMULVF_FLOAT(vy0, beta, gvl);
|
|
VSSEV_FLOAT(&y[j*inc_y], stride_y, vy0, gvl);
|
|
j += gvl;
|
|
}
|
|
}
|
|
|
|
}else{//alpha != 0 && beta != 0; y = ax + by
|
|
if(inc_x == 1 && inc_y == 1){
|
|
gvl = VSETVL(n);
|
|
if(gvl <= n/2){
|
|
for(i=0,j=0;i<n/(2*gvl);i++){
|
|
vx0 = VLEV_FLOAT(&x[j], gvl);
|
|
vx0 = VFMULVF_FLOAT(vx0, alpha, gvl);
|
|
vy0 = VLEV_FLOAT(&y[j], gvl);
|
|
vy0 = VFMACCVF_FLOAT(vx0, beta, vy0, gvl);
|
|
VSEV_FLOAT(&y[j], vy0, gvl);
|
|
|
|
vx1 = VLEV_FLOAT(&x[j+gvl], gvl);
|
|
vx1 = VFMULVF_FLOAT(vx1, alpha, gvl);
|
|
vy1 = VLEV_FLOAT(&y[j+gvl], gvl);
|
|
vy1 = VFMACCVF_FLOAT(vx1, beta, vy1,gvl);
|
|
VSEV_FLOAT(&y[j+gvl], vy1, gvl);
|
|
j += gvl * 2;
|
|
}
|
|
}
|
|
for(;j<n;){
|
|
gvl = VSETVL(n-j);
|
|
vx0 = VLEV_FLOAT(&x[j], gvl);
|
|
vx0 = VFMULVF_FLOAT(vx0, alpha, gvl);
|
|
vy0 = VLEV_FLOAT(&y[j], gvl);
|
|
vy0 = VFMACCVF_FLOAT(vx0, beta, vy0, gvl);
|
|
VSEV_FLOAT(&y[j], vy0, gvl);
|
|
j += gvl;
|
|
}
|
|
}else if(inc_y == 1){
|
|
gvl = VSETVL(n);
|
|
stride_x = inc_x * sizeof(FLOAT);
|
|
if(gvl <= n/2){
|
|
BLASLONG inc_xv = inc_x * gvl;
|
|
for(i=0,j=0;i<n/(2*gvl);i++){
|
|
vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl);
|
|
vx0 = VFMULVF_FLOAT(vx0, alpha, gvl);
|
|
vy0 = VLEV_FLOAT(&y[j], gvl);
|
|
vy0 = VFMACCVF_FLOAT(vx0, beta, vy0, gvl);
|
|
VSEV_FLOAT(&y[j], vy0, gvl);
|
|
|
|
vx1 = VLSEV_FLOAT(&x[ix+inc_xv], stride_x, gvl);
|
|
vx1 = VFMULVF_FLOAT(vx1, alpha, gvl);
|
|
vy1 = VLEV_FLOAT(&y[j+gvl], gvl);
|
|
vy1 = VFMACCVF_FLOAT(vx1, beta, vy1, gvl);
|
|
VSEV_FLOAT(&y[j+gvl], vy1, gvl);
|
|
j += gvl * 2;
|
|
ix += inc_xv * 2;
|
|
}
|
|
}
|
|
for(;j<n;){
|
|
gvl = VSETVL(n-j);
|
|
vx0 = VLSEV_FLOAT(&x[j*inc_x], stride_x, gvl);
|
|
vx0 = VFMULVF_FLOAT(vx0, alpha, gvl);
|
|
vy0 = VLEV_FLOAT(&y[j], gvl);
|
|
vy0 = VFMACCVF_FLOAT(vx0, beta, vy0, gvl);
|
|
VSEV_FLOAT(&y[j], vy0, gvl);
|
|
j += gvl;
|
|
}
|
|
}else if(inc_x == 1){
|
|
gvl = VSETVL(n);
|
|
stride_y = inc_y * sizeof(FLOAT);
|
|
if(gvl <= n/2){
|
|
BLASLONG inc_yv = inc_y * gvl;
|
|
for(i=0,j=0;i<n/(2*gvl);i++){
|
|
vx0 = VLEV_FLOAT(&x[j], gvl);
|
|
vx0 = VFMULVF_FLOAT(vx0, alpha, gvl);
|
|
vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl);
|
|
vy0 = VFMACCVF_FLOAT(vx0, beta, vy0, gvl);
|
|
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl);
|
|
|
|
vx1 = VLEV_FLOAT(&x[j+gvl], gvl);
|
|
vx1 = VFMULVF_FLOAT(vx1, alpha, gvl);
|
|
vy1 = VLSEV_FLOAT(&y[iy+inc_yv], stride_y, gvl);
|
|
vy1 = VFMACCVF_FLOAT(vx1, beta, vy1, gvl);
|
|
VSSEV_FLOAT(&y[iy+inc_yv], stride_y, vy1, gvl);
|
|
j += gvl * 2;
|
|
iy += inc_yv * 2;
|
|
}
|
|
}
|
|
for(;j<n;){
|
|
gvl = VSETVL(n-j);
|
|
vx0 = VLEV_FLOAT(&x[j], gvl);
|
|
vx0 = VFMULVF_FLOAT(vx0, alpha, gvl);
|
|
vy0 = VLSEV_FLOAT(&y[j*inc_y], stride_y, gvl);
|
|
vy0 = VFMACCVF_FLOAT(vx0, beta, vy0, gvl);
|
|
VSSEV_FLOAT(&y[j*inc_y], stride_y, vy0, gvl);
|
|
j += gvl;
|
|
}
|
|
}else{//inc_x != 1 && inc_y != 1
|
|
gvl = VSETVL(n);
|
|
stride_x = inc_x * sizeof(FLOAT);
|
|
stride_y = inc_y * sizeof(FLOAT);
|
|
if(gvl <= n/2){
|
|
BLASLONG inc_xv = inc_x * gvl;
|
|
BLASLONG inc_yv = inc_y * gvl;
|
|
for(i=0,j=0;i<n/(2*gvl);i++){
|
|
vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl);
|
|
vx0 = VFMULVF_FLOAT(vx0, alpha, gvl);
|
|
vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl);
|
|
vy0 = VFMACCVF_FLOAT(vx0, beta, vy0, gvl);
|
|
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl);
|
|
|
|
vx1 = VLSEV_FLOAT(&x[ix+inc_xv], stride_x, gvl);
|
|
vx1 = VFMULVF_FLOAT(vx1, alpha, gvl);
|
|
vy1 = VLSEV_FLOAT(&y[iy+inc_yv], stride_y, gvl);
|
|
vy1 = VFMACCVF_FLOAT(vx1, beta, vy1, gvl);
|
|
VSSEV_FLOAT(&y[iy+inc_yv], stride_y, vy1, gvl);
|
|
j += gvl * 2;
|
|
ix += inc_xv * 2;
|
|
iy += inc_yv * 2;
|
|
}
|
|
}
|
|
for(;j<n;){
|
|
gvl = VSETVL(n-j);
|
|
vx0 = VLSEV_FLOAT(&x[j*inc_x], stride_x, gvl);
|
|
vx0 = VFMULVF_FLOAT(vx0, alpha, gvl);
|
|
vy0 = VLSEV_FLOAT(&y[j*inc_y], stride_y, gvl);
|
|
vy0 = VFMACCVF_FLOAT(vx0, beta, vy0, gvl);
|
|
VSSEV_FLOAT(&y[j*inc_y], stride_y, vy0, gvl);
|
|
j += gvl;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return(0);
|
|
}
|
|
|