532 lines
15 KiB
C
532 lines
15 KiB
C
/*********************************************************************/
|
|
/* Copyright 2009, 2010 The University of Texas at Austin. */
|
|
/* All rights reserved. */
|
|
/* */
|
|
/* Redistribution and use in source and binary forms, with or */
|
|
/* without modification, are permitted provided that the following */
|
|
/* conditions are met: */
|
|
/* */
|
|
/* 1. Redistributions of source code must retain the above */
|
|
/* copyright notice, this list of conditions and the following */
|
|
/* disclaimer. */
|
|
/* */
|
|
/* 2. Redistributions in binary form must reproduce the above */
|
|
/* copyright notice, this list of conditions and the following */
|
|
/* disclaimer in the documentation and/or other materials */
|
|
/* provided with the distribution. */
|
|
/* */
|
|
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
|
|
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
|
|
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
|
|
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
|
|
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
|
|
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
|
|
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
|
|
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
|
|
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
|
|
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
|
|
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
|
|
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
|
|
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
|
|
/* POSSIBILITY OF SUCH DAMAGE. */
|
|
/* */
|
|
/* The views and conclusions contained in the software and */
|
|
/* documentation are those of the authors and should not be */
|
|
/* interpreted as representing official policies, either expressed */
|
|
/* or implied, of The University of Texas at Austin. */
|
|
/*********************************************************************/
|
|
|
|
#include <stdio.h>
|
|
#include "common.h"
|
|
|
|
#ifndef BETA_OPERATION
|
|
#define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
|
|
GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
|
|
BETA[0], BETA[1], NULL, 0, NULL, 0, \
|
|
(FLOAT *)(C) + (M_FROM) + (N_FROM) * (LDC) * COMPSIZE, LDC)
|
|
#endif
|
|
|
|
#ifndef ICOPYB_OPERATION
|
|
#if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
|
|
defined(RN) || defined(RT) || defined(RC) || defined(RR)
|
|
#define ICOPYB_OPERATION(M, N, A, LDA, X, Y, BUFFER) \
|
|
GEMM3M_ITCOPYB(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER)
|
|
#else
|
|
#define ICOPYB_OPERATION(M, N, A, LDA, X, Y, BUFFER) \
|
|
GEMM3M_INCOPYB(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef ICOPYR_OPERATION
|
|
#if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
|
|
defined(RN) || defined(RT) || defined(RC) || defined(RR)
|
|
#define ICOPYR_OPERATION(M, N, A, LDA, X, Y, BUFFER) \
|
|
GEMM3M_ITCOPYR(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER)
|
|
#else
|
|
#define ICOPYR_OPERATION(M, N, A, LDA, X, Y, BUFFER) \
|
|
GEMM3M_INCOPYR(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef ICOPYI_OPERATION
|
|
#if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
|
|
defined(RN) || defined(RT) || defined(RC) || defined(RR)
|
|
#define ICOPYI_OPERATION(M, N, A, LDA, X, Y, BUFFER) \
|
|
GEMM3M_ITCOPYI(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER)
|
|
#else
|
|
#define ICOPYI_OPERATION(M, N, A, LDA, X, Y, BUFFER) \
|
|
GEMM3M_INCOPYI(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER)
|
|
#endif
|
|
#endif
|
|
|
|
|
|
#ifndef OCOPYB_OPERATION
|
|
#if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
|
|
defined(NR) || defined(TR) || defined(CR) || defined(RR)
|
|
#define OCOPYB_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \
|
|
GEMM3M_ONCOPYB(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER)
|
|
#else
|
|
#define OCOPYB_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \
|
|
GEMM3M_OTCOPYB(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef OCOPYR_OPERATION
|
|
#if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
|
|
defined(NR) || defined(TR) || defined(CR) || defined(RR)
|
|
#define OCOPYR_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \
|
|
GEMM3M_ONCOPYR(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER)
|
|
#else
|
|
#define OCOPYR_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \
|
|
GEMM3M_OTCOPYR(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER)
|
|
#endif
|
|
#endif
|
|
|
|
|
|
#ifndef OCOPYI_OPERATION
|
|
#if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
|
|
defined(NR) || defined(TR) || defined(CR) || defined(RR)
|
|
#define OCOPYI_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \
|
|
GEMM3M_ONCOPYI(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER)
|
|
#else
|
|
#define OCOPYI_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \
|
|
GEMM3M_OTCOPYI(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef KERNEL_FUNC
|
|
#define KERNEL_FUNC GEMM3M_KERNEL
|
|
#endif
|
|
|
|
#ifndef KERNEL_OPERATION
|
|
#define KERNEL_OPERATION(M, N, K, ALPHA_R, ALPHA_I, SA, SB, C, LDC, X, Y) \
|
|
KERNEL_FUNC(M, N, K, ALPHA_R, ALPHA_I, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
|
|
#endif
|
|
|
|
#ifndef A
|
|
#define A args -> a
|
|
#endif
|
|
#ifndef LDA
|
|
#define LDA args -> lda
|
|
#endif
|
|
#ifndef B
|
|
#define B args -> b
|
|
#endif
|
|
#ifndef LDB
|
|
#define LDB args -> ldb
|
|
#endif
|
|
#ifndef C
|
|
#define C args -> c
|
|
#endif
|
|
#ifndef LDC
|
|
#define LDC args -> ldc
|
|
#endif
|
|
#ifndef M
|
|
#define M args -> m
|
|
#endif
|
|
#ifndef N
|
|
#define N args -> n
|
|
#endif
|
|
#ifndef K
|
|
#define K args -> k
|
|
#endif
|
|
|
|
#if defined(NN) || defined(NT) || defined(TN) || defined(TT)
|
|
#define ALPHA1 ONE
|
|
#define ALPHA2 ONE
|
|
#define ALPHA5 ZERO
|
|
#define ALPHA6 ONE
|
|
|
|
#define ALPHA7 ONE
|
|
#define ALPHA8 ZERO
|
|
#define ALPHA11 ONE
|
|
#define ALPHA12 -ONE
|
|
|
|
#define ALPHA13 ZERO
|
|
#define ALPHA14 ONE
|
|
#define ALPHA17 -ONE
|
|
#define ALPHA18 -ONE
|
|
#endif
|
|
|
|
#if defined(NR) || defined(NC) || defined(TR) || defined(TC)
|
|
#define ALPHA1 ONE
|
|
#define ALPHA2 ONE
|
|
#define ALPHA5 ONE
|
|
#define ALPHA6 ZERO
|
|
|
|
#define ALPHA7 ZERO
|
|
#define ALPHA8 ONE
|
|
#define ALPHA11 -ONE
|
|
#define ALPHA12 -ONE
|
|
|
|
#define ALPHA13 ONE
|
|
#define ALPHA14 ZERO
|
|
#define ALPHA17 -ONE
|
|
#define ALPHA18 ONE
|
|
#endif
|
|
|
|
#if defined(RN) || defined(RT) || defined(CN) || defined(CT)
|
|
#define ALPHA1 ONE
|
|
#define ALPHA2 ONE
|
|
#define ALPHA5 ONE
|
|
#define ALPHA6 ZERO
|
|
|
|
#define ALPHA7 ZERO
|
|
#define ALPHA8 ONE
|
|
#define ALPHA11 -ONE
|
|
#define ALPHA12 ONE
|
|
|
|
#define ALPHA13 ONE
|
|
#define ALPHA14 ZERO
|
|
#define ALPHA17 -ONE
|
|
#define ALPHA18 -ONE
|
|
#endif
|
|
|
|
#if defined(RR) || defined(RC) || defined(CR) || defined(CC)
|
|
#define ALPHA1 ONE
|
|
#define ALPHA2 ONE
|
|
#define ALPHA5 ZERO
|
|
#define ALPHA6 -ONE
|
|
|
|
#define ALPHA7 ONE
|
|
#define ALPHA8 ZERO
|
|
#define ALPHA11 ONE
|
|
#define ALPHA12 ONE
|
|
|
|
#define ALPHA13 ZERO
|
|
#define ALPHA14 ONE
|
|
#define ALPHA17 -ONE
|
|
#define ALPHA18 ONE
|
|
#endif
|
|
|
|
#ifdef TIMING
|
|
#define START_RPCC() rpcc_counter = rpcc()
|
|
#define STOP_RPCC(COUNTER) COUNTER += rpcc() - rpcc_counter
|
|
#else
|
|
#define START_RPCC()
|
|
#define STOP_RPCC(COUNTER)
|
|
#endif
|
|
|
|
int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n,
|
|
FLOAT *sa, FLOAT *sb, BLASLONG dummy){
|
|
BLASLONG k, lda, ldb, ldc;
|
|
FLOAT *alpha, *beta;
|
|
FLOAT *a, *b, *c;
|
|
BLASLONG m_from, m_to, n_from, n_to;
|
|
|
|
BLASLONG ls, is, js, jjs;
|
|
BLASLONG min_l, min_i, min_j, min_jj;
|
|
|
|
#ifdef TIMING
|
|
BLASULONG rpcc_counter;
|
|
BLASULONG BLASLONG innercost = 0;
|
|
BLASULONG BLASLONG outercost = 0;
|
|
BLASULONG BLASLONG kernelcost = 0;
|
|
double total;
|
|
#endif
|
|
|
|
k = K;
|
|
|
|
a = (FLOAT *)A;
|
|
b = (FLOAT *)B;
|
|
c = (FLOAT *)C;
|
|
|
|
lda = LDA;
|
|
ldb = LDB;
|
|
ldc = LDC;
|
|
|
|
alpha = (FLOAT *)args -> alpha;
|
|
beta = (FLOAT *)args -> beta;
|
|
|
|
m_from = 0;
|
|
m_to = M;
|
|
|
|
if (range_m) {
|
|
m_from = *(((BLASLONG *)range_m) + 0);
|
|
m_to = *(((BLASLONG *)range_m) + 1);
|
|
}
|
|
|
|
n_from = 0;
|
|
n_to = N;
|
|
|
|
if (range_n) {
|
|
n_from = *(((BLASLONG *)range_n) + 0);
|
|
n_to = *(((BLASLONG *)range_n) + 1);
|
|
}
|
|
|
|
if (beta) {
|
|
#ifndef COMPLEX
|
|
if (beta[0] != ONE)
|
|
#else
|
|
if ((beta[0] != ONE) || (beta[1] != ZERO))
|
|
#endif
|
|
BETA_OPERATION(m_from, m_to, n_from, n_to, beta, c, ldc);
|
|
}
|
|
|
|
if ((k == 0) || (alpha == NULL)) return 0;
|
|
|
|
if ((alpha[0] == ZERO)
|
|
#ifdef COMPLEX
|
|
&& (alpha[1] == ZERO)
|
|
#endif
|
|
) return 0;
|
|
|
|
#if 0
|
|
printf("GEMM: M_from : %ld M_to : %ld N_from : %ld N_to : %ld k : %ld\n", m_from, m_to, n_from, n_to, k);
|
|
printf("GEMM: P = %4ld Q = %4ld R = %4ld\n", (BLASLONG)GEMM3M_P, (BLASLONG)GEMM3M_Q, (BLASLONG)GEMM3M_R);
|
|
printf("GEMM: SA .. %p SB .. %p\n", sa, sb);
|
|
#endif
|
|
|
|
#ifdef TIMING
|
|
innercost = 0;
|
|
outercost = 0;
|
|
kernelcost = 0;
|
|
#endif
|
|
|
|
for(js = n_from; js < n_to; js += GEMM3M_R){
|
|
min_j = n_to - js;
|
|
if (min_j > GEMM3M_R) min_j = GEMM3M_R;
|
|
|
|
for(ls = 0; ls < k; ls += min_l){
|
|
min_l = k - ls;
|
|
|
|
if (min_l >= GEMM3M_Q * 2) {
|
|
min_l = GEMM3M_Q;
|
|
} else {
|
|
if (min_l > GEMM3M_Q) {
|
|
min_l = (min_l + 1) / 2;
|
|
#ifdef UNROLL_X
|
|
min_l = ((min_l + UNROLL_X - 1)/UNROLL_X) * UNROLL_X;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
min_i = m_to - m_from;
|
|
if (min_i >= GEMM3M_P * 2) {
|
|
min_i = GEMM3M_P;
|
|
} else {
|
|
if (min_i > GEMM3M_P) {
|
|
min_i = ((min_i / 2 + GEMM3M_UNROLL_M - 1)/GEMM3M_UNROLL_M) * GEMM3M_UNROLL_M;
|
|
}
|
|
}
|
|
|
|
START_RPCC();
|
|
|
|
ICOPYB_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
|
|
|
|
STOP_RPCC(innercost);
|
|
|
|
for(jjs = js; jjs < js + min_j; jjs += min_jj){
|
|
min_jj = min_j + js - jjs;
|
|
if (min_jj > GEMM3M_UNROLL_N*3) min_jj = GEMM3M_UNROLL_N*3;
|
|
|
|
START_RPCC();
|
|
|
|
#if defined(NN) || defined(NT) || defined(TN) || defined(TT) || defined(RN) || defined(RT) || defined(CN) || defined(CT)
|
|
OCOPYB_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js));
|
|
#else
|
|
OCOPYB_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js));
|
|
#endif
|
|
|
|
STOP_RPCC(outercost);
|
|
|
|
START_RPCC();
|
|
|
|
KERNEL_OPERATION(min_i, min_jj, min_l, ALPHA5, ALPHA6,
|
|
sa, sb + min_l * (jjs - js), c, ldc, m_from, jjs);
|
|
|
|
STOP_RPCC(kernelcost);
|
|
|
|
}
|
|
|
|
for(is = m_from + min_i; is < m_to; is += min_i){
|
|
min_i = m_to - is;
|
|
if (min_i >= GEMM3M_P * 2) {
|
|
min_i = GEMM3M_P;
|
|
} else
|
|
if (min_i > GEMM3M_P) {
|
|
min_i = ((min_i / 2 + GEMM3M_UNROLL_M - 1)/GEMM3M_UNROLL_M) * GEMM3M_UNROLL_M;
|
|
}
|
|
|
|
START_RPCC();
|
|
|
|
ICOPYB_OPERATION(min_l, min_i, a, lda, ls, is, sa);
|
|
|
|
STOP_RPCC(innercost);
|
|
|
|
START_RPCC();
|
|
|
|
KERNEL_OPERATION(min_i, min_j, min_l, ALPHA5, ALPHA6, sa, sb, c, ldc, is, js);
|
|
|
|
STOP_RPCC(kernelcost);
|
|
}
|
|
|
|
min_i = m_to - m_from;
|
|
if (min_i >= GEMM3M_P * 2) {
|
|
min_i = GEMM3M_P;
|
|
} else {
|
|
if (min_i > GEMM3M_P) {
|
|
min_i = ((min_i / 2 + GEMM3M_UNROLL_M - 1)/GEMM3M_UNROLL_M) * GEMM3M_UNROLL_M;
|
|
}
|
|
}
|
|
|
|
START_RPCC();
|
|
|
|
ICOPYR_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
|
|
|
|
STOP_RPCC(innercost);
|
|
|
|
for(jjs = js; jjs < js + min_j; jjs += min_jj){
|
|
min_jj = min_j + js - jjs;
|
|
if (min_jj > GEMM3M_UNROLL_N*3) min_jj = GEMM3M_UNROLL_N*3;
|
|
|
|
START_RPCC();
|
|
|
|
#if defined(NN) || defined(NT) || defined(TN) || defined(TT)
|
|
OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js));
|
|
#elif defined(RR) || defined(RC) || defined(CR) || defined(CC)
|
|
OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js));
|
|
#elif defined(RN) || defined(RT) || defined(CN) || defined(CT)
|
|
OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js));
|
|
#else
|
|
OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js));
|
|
#endif
|
|
|
|
STOP_RPCC(outercost);
|
|
|
|
START_RPCC();
|
|
|
|
KERNEL_OPERATION(min_i, min_jj, min_l, ALPHA11, ALPHA12,
|
|
sa, sb + min_l * (jjs - js), c, ldc, m_from, jjs);
|
|
|
|
STOP_RPCC(kernelcost);
|
|
|
|
}
|
|
|
|
for(is = m_from + min_i; is < m_to; is += min_i){
|
|
min_i = m_to - is;
|
|
if (min_i >= GEMM3M_P * 2) {
|
|
min_i = GEMM3M_P;
|
|
} else
|
|
if (min_i > GEMM3M_P) {
|
|
min_i = ((min_i / 2 + GEMM3M_UNROLL_M - 1)/GEMM3M_UNROLL_M) * GEMM3M_UNROLL_M;
|
|
}
|
|
|
|
START_RPCC();
|
|
|
|
ICOPYR_OPERATION(min_l, min_i, a, lda, ls, is, sa);
|
|
|
|
STOP_RPCC(innercost);
|
|
|
|
START_RPCC();
|
|
|
|
KERNEL_OPERATION(min_i, min_j, min_l, ALPHA11, ALPHA12, sa, sb, c, ldc, is, js);
|
|
|
|
STOP_RPCC(kernelcost);
|
|
|
|
}
|
|
|
|
min_i = m_to - m_from;
|
|
if (min_i >= GEMM3M_P * 2) {
|
|
min_i = GEMM3M_P;
|
|
} else {
|
|
if (min_i > GEMM3M_P) {
|
|
min_i = ((min_i / 2 + GEMM3M_UNROLL_M - 1)/GEMM3M_UNROLL_M) * GEMM3M_UNROLL_M;
|
|
}
|
|
}
|
|
|
|
START_RPCC();
|
|
|
|
ICOPYI_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
|
|
|
|
STOP_RPCC(innercost);
|
|
|
|
for(jjs = js; jjs < js + min_j; jjs += min_jj){
|
|
min_jj = min_j + js - jjs;
|
|
if (min_jj > GEMM3M_UNROLL_N*3) min_jj = GEMM3M_UNROLL_N*3;
|
|
|
|
START_RPCC();
|
|
|
|
#if defined(NN) || defined(NT) || defined(TN) || defined(TT)
|
|
OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js));
|
|
#elif defined(RR) || defined(RC) || defined(CR) || defined(CC)
|
|
OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js));
|
|
#elif defined(RN) || defined(RT) || defined(CN) || defined(CT)
|
|
OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js));
|
|
#else
|
|
OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js));
|
|
#endif
|
|
|
|
STOP_RPCC(outercost);
|
|
|
|
START_RPCC();
|
|
|
|
KERNEL_OPERATION(min_i, min_jj, min_l, ALPHA17, ALPHA18,
|
|
sa, sb + min_l * (jjs - js), c, ldc, m_from, jjs);
|
|
|
|
STOP_RPCC(kernelcost);
|
|
|
|
}
|
|
|
|
for(is = m_from + min_i; is < m_to; is += min_i){
|
|
min_i = m_to - is;
|
|
if (min_i >= GEMM3M_P * 2) {
|
|
min_i = GEMM3M_P;
|
|
} else
|
|
if (min_i > GEMM3M_P) {
|
|
min_i = ((min_i / 2 + GEMM3M_UNROLL_M - 1)/GEMM3M_UNROLL_M) * GEMM3M_UNROLL_M;
|
|
}
|
|
|
|
START_RPCC();
|
|
|
|
ICOPYI_OPERATION(min_l, min_i, a, lda, ls, is, sa);
|
|
|
|
STOP_RPCC(innercost);
|
|
|
|
START_RPCC();
|
|
|
|
KERNEL_OPERATION(min_i, min_j, min_l, ALPHA17, ALPHA18, sa, sb, c, ldc, is, js);
|
|
|
|
STOP_RPCC(kernelcost);
|
|
|
|
}
|
|
|
|
} /* end of js */
|
|
} /* end of ls */
|
|
|
|
|
|
#ifdef TIMING
|
|
total = (double)outercost + (double)innercost + (double)kernelcost;
|
|
|
|
printf( "Copy A : %5.2f Copy B: %5.2f Kernel : %5.2f\n",
|
|
innercost / total * 100., outercost / total * 100.,
|
|
kernelcost / total * 100.);
|
|
|
|
printf( " Total %10.3f%% %10.3f MFlops\n",
|
|
((double)(m_to - m_from) * (double)(n_to - n_from) * (double)k) / (double)kernelcost / 2 * 100,
|
|
2400. * (2. * (double)(m_to - m_from) * (double)(n_to - n_from) * (double)k) / (double)kernelcost);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|