251 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			251 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZPPT01
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZPPT01( UPLO, N, A, AFAC, RWORK, RESID )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            N
 | 
						|
*       DOUBLE PRECISION   RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   RWORK( * )
 | 
						|
*       COMPLEX*16         A( * ), AFAC( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZPPT01 reconstructs a Hermitian positive definite packed matrix A
 | 
						|
*> from its L*L' or U'*U factorization and computes the residual
 | 
						|
*>    norm( L*L' - A ) / ( N * norm(A) * EPS ) or
 | 
						|
*>    norm( U'*U - A ) / ( N * norm(A) * EPS ),
 | 
						|
*> where EPS is the machine epsilon, L' is the conjugate transpose of
 | 
						|
*> L, and U' is the conjugate transpose of U.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          Hermitian matrix A is stored:
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of rows and columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (N*(N+1)/2)
 | 
						|
*>          The original Hermitian matrix A, stored as a packed
 | 
						|
*>          triangular matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AFAC
 | 
						|
*> \verbatim
 | 
						|
*>          AFAC is COMPLEX*16 array, dimension (N*(N+1)/2)
 | 
						|
*>          On entry, the factor L or U from the L*L' or U'*U
 | 
						|
*>          factorization of A, stored as a packed triangular matrix.
 | 
						|
*>          Overwritten with the reconstructed matrix, and then with the
 | 
						|
*>          difference L*L' - A (or U'*U - A).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is DOUBLE PRECISION array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is DOUBLE PRECISION
 | 
						|
*>          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
 | 
						|
*>          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex16_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZPPT01( UPLO, N, A, AFAC, RWORK, RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            N
 | 
						|
      DOUBLE PRECISION   RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   RWORK( * )
 | 
						|
      COMPLEX*16         A( * ), AFAC( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, K, KC
 | 
						|
      DOUBLE PRECISION   ANORM, EPS, TR
 | 
						|
      COMPLEX*16         TC
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      DOUBLE PRECISION   DLAMCH, ZLANHP
 | 
						|
      COMPLEX*16         ZDOTC
 | 
						|
      EXTERNAL           LSAME, DLAMCH, ZLANHP, ZDOTC
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZHPR, ZSCAL, ZTPMV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, DIMAG
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if N = 0
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Exit with RESID = 1/EPS if ANORM = 0.
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
      ANORM = ZLANHP( '1', UPLO, N, A, RWORK )
 | 
						|
      IF( ANORM.LE.ZERO ) THEN
 | 
						|
         RESID = ONE / EPS
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Check the imaginary parts of the diagonal elements and return with
 | 
						|
*     an error code if any are nonzero.
 | 
						|
*
 | 
						|
      KC = 1
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         DO 10 K = 1, N
 | 
						|
            IF( DIMAG( AFAC( KC ) ).NE.ZERO ) THEN
 | 
						|
               RESID = ONE / EPS
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
            KC = KC + K + 1
 | 
						|
   10    CONTINUE
 | 
						|
      ELSE
 | 
						|
         DO 20 K = 1, N
 | 
						|
            IF( DIMAG( AFAC( KC ) ).NE.ZERO ) THEN
 | 
						|
               RESID = ONE / EPS
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
            KC = KC + N - K + 1
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the product U'*U, overwriting U.
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         KC = ( N*( N-1 ) ) / 2 + 1
 | 
						|
         DO 30 K = N, 1, -1
 | 
						|
*
 | 
						|
*           Compute the (K,K) element of the result.
 | 
						|
*
 | 
						|
            TR = ZDOTC( K, AFAC( KC ), 1, AFAC( KC ), 1 )
 | 
						|
            AFAC( KC+K-1 ) = TR
 | 
						|
*
 | 
						|
*           Compute the rest of column K.
 | 
						|
*
 | 
						|
            IF( K.GT.1 ) THEN
 | 
						|
               CALL ZTPMV( 'Upper', 'Conjugate', 'Non-unit', K-1, AFAC,
 | 
						|
     $                     AFAC( KC ), 1 )
 | 
						|
               KC = KC - ( K-1 )
 | 
						|
            END IF
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
*        Compute the difference  L*L' - A
 | 
						|
*
 | 
						|
         KC = 1
 | 
						|
         DO 50 K = 1, N
 | 
						|
            DO 40 I = 1, K - 1
 | 
						|
               AFAC( KC+I-1 ) = AFAC( KC+I-1 ) - A( KC+I-1 )
 | 
						|
   40       CONTINUE
 | 
						|
            AFAC( KC+K-1 ) = AFAC( KC+K-1 ) - DBLE( A( KC+K-1 ) )
 | 
						|
            KC = KC + K
 | 
						|
   50    CONTINUE
 | 
						|
*
 | 
						|
*     Compute the product L*L', overwriting L.
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
         KC = ( N*( N+1 ) ) / 2
 | 
						|
         DO 60 K = N, 1, -1
 | 
						|
*
 | 
						|
*           Add a multiple of column K of the factor L to each of
 | 
						|
*           columns K+1 through N.
 | 
						|
*
 | 
						|
            IF( K.LT.N )
 | 
						|
     $         CALL ZHPR( 'Lower', N-K, ONE, AFAC( KC+1 ), 1,
 | 
						|
     $                    AFAC( KC+N-K+1 ) )
 | 
						|
*
 | 
						|
*           Scale column K by the diagonal element.
 | 
						|
*
 | 
						|
            TC = AFAC( KC )
 | 
						|
            CALL ZSCAL( N-K+1, TC, AFAC( KC ), 1 )
 | 
						|
*
 | 
						|
            KC = KC - ( N-K+2 )
 | 
						|
   60    CONTINUE
 | 
						|
*
 | 
						|
*        Compute the difference  U'*U - A
 | 
						|
*
 | 
						|
         KC = 1
 | 
						|
         DO 80 K = 1, N
 | 
						|
            AFAC( KC ) = AFAC( KC ) - DBLE( A( KC ) )
 | 
						|
            DO 70 I = K + 1, N
 | 
						|
               AFAC( KC+I-K ) = AFAC( KC+I-K ) - A( KC+I-K )
 | 
						|
   70       CONTINUE
 | 
						|
            KC = KC + N - K + 1
 | 
						|
   80    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute norm( L*U - A ) / ( N * norm(A) * EPS )
 | 
						|
*
 | 
						|
      RESID = ZLANHP( '1', UPLO, N, AFAC, RWORK )
 | 
						|
*
 | 
						|
      RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZPPT01
 | 
						|
*
 | 
						|
      END
 |