242 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			242 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DPPT03
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
 | 
						|
*                          RESID )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            LDWORK, N
 | 
						|
*       DOUBLE PRECISION   RCOND, RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   A( * ), AINV( * ), RWORK( * ),
 | 
						|
*      $                   WORK( LDWORK, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DPPT03 computes the residual for a symmetric packed matrix times its
 | 
						|
*> inverse:
 | 
						|
*>    norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
 | 
						|
*> where EPS is the machine epsilon.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          symmetric matrix A is stored:
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of rows and columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (N*(N+1)/2)
 | 
						|
*>          The original symmetric matrix A, stored as a packed
 | 
						|
*>          triangular matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AINV
 | 
						|
*> \verbatim
 | 
						|
*>          AINV is DOUBLE PRECISION array, dimension (N*(N+1)/2)
 | 
						|
*>          The (symmetric) inverse of the matrix A, stored as a packed
 | 
						|
*>          triangular matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (LDWORK,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LDWORK is INTEGER
 | 
						|
*>          The leading dimension of the array WORK.  LDWORK >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is DOUBLE PRECISION array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is DOUBLE PRECISION
 | 
						|
*>          The reciprocal of the condition number of A, computed as
 | 
						|
*>          ( 1/norm(A) ) / norm(AINV).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is DOUBLE PRECISION
 | 
						|
*>          norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup double_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
 | 
						|
     $                   RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            LDWORK, N
 | 
						|
      DOUBLE PRECISION   RCOND, RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   A( * ), AINV( * ), RWORK( * ),
 | 
						|
     $                   WORK( LDWORK, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J, JJ
 | 
						|
      DOUBLE PRECISION   AINVNM, ANORM, EPS
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLANGE, DLANSP
 | 
						|
      EXTERNAL           LSAME, DLAMCH, DLANGE, DLANSP
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DCOPY, DSPMV
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if N = 0.
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         RCOND = ONE
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
      ANORM = DLANSP( '1', UPLO, N, A, RWORK )
 | 
						|
      AINVNM = DLANSP( '1', UPLO, N, AINV, RWORK )
 | 
						|
      IF( ANORM.LE.ZERO .OR. AINVNM.EQ.ZERO ) THEN
 | 
						|
         RCOND = ZERO
 | 
						|
         RESID = ONE / EPS
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
      RCOND = ( ONE / ANORM ) / AINVNM
 | 
						|
*
 | 
						|
*     UPLO = 'U':
 | 
						|
*     Copy the leading N-1 x N-1 submatrix of AINV to WORK(1:N,2:N) and
 | 
						|
*     expand it to a full matrix, then multiply by A one column at a
 | 
						|
*     time, moving the result one column to the left.
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
*
 | 
						|
*        Copy AINV
 | 
						|
*
 | 
						|
         JJ = 1
 | 
						|
         DO 10 J = 1, N - 1
 | 
						|
            CALL DCOPY( J, AINV( JJ ), 1, WORK( 1, J+1 ), 1 )
 | 
						|
            CALL DCOPY( J-1, AINV( JJ ), 1, WORK( J, 2 ), LDWORK )
 | 
						|
            JJ = JJ + J
 | 
						|
   10    CONTINUE
 | 
						|
         JJ = ( ( N-1 )*N ) / 2 + 1
 | 
						|
         CALL DCOPY( N-1, AINV( JJ ), 1, WORK( N, 2 ), LDWORK )
 | 
						|
*
 | 
						|
*        Multiply by A
 | 
						|
*
 | 
						|
         DO 20 J = 1, N - 1
 | 
						|
            CALL DSPMV( 'Upper', N, -ONE, A, WORK( 1, J+1 ), 1, ZERO,
 | 
						|
     $                  WORK( 1, J ), 1 )
 | 
						|
   20    CONTINUE
 | 
						|
         CALL DSPMV( 'Upper', N, -ONE, A, AINV( JJ ), 1, ZERO,
 | 
						|
     $               WORK( 1, N ), 1 )
 | 
						|
*
 | 
						|
*     UPLO = 'L':
 | 
						|
*     Copy the trailing N-1 x N-1 submatrix of AINV to WORK(1:N,1:N-1)
 | 
						|
*     and multiply by A, moving each column to the right.
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Copy AINV
 | 
						|
*
 | 
						|
         CALL DCOPY( N-1, AINV( 2 ), 1, WORK( 1, 1 ), LDWORK )
 | 
						|
         JJ = N + 1
 | 
						|
         DO 30 J = 2, N
 | 
						|
            CALL DCOPY( N-J+1, AINV( JJ ), 1, WORK( J, J-1 ), 1 )
 | 
						|
            CALL DCOPY( N-J, AINV( JJ+1 ), 1, WORK( J, J ), LDWORK )
 | 
						|
            JJ = JJ + N - J + 1
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
*        Multiply by A
 | 
						|
*
 | 
						|
         DO 40 J = N, 2, -1
 | 
						|
            CALL DSPMV( 'Lower', N, -ONE, A, WORK( 1, J-1 ), 1, ZERO,
 | 
						|
     $                  WORK( 1, J ), 1 )
 | 
						|
   40    CONTINUE
 | 
						|
         CALL DSPMV( 'Lower', N, -ONE, A, AINV( 1 ), 1, ZERO,
 | 
						|
     $               WORK( 1, 1 ), 1 )
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Add the identity matrix to WORK .
 | 
						|
*
 | 
						|
      DO 50 I = 1, N
 | 
						|
         WORK( I, I ) = WORK( I, I ) + ONE
 | 
						|
   50 CONTINUE
 | 
						|
*
 | 
						|
*     Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
 | 
						|
*
 | 
						|
      RESID = DLANGE( '1', N, N, WORK, LDWORK, RWORK )
 | 
						|
*
 | 
						|
      RESID = ( ( RESID*RCOND ) / EPS ) / DBLE( N )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DPPT03
 | 
						|
*
 | 
						|
      END
 |