281 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			281 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DPFTRS
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DPFTRS + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpftrs.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpftrs.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpftrs.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          TRANSR, UPLO
 | 
						|
*       INTEGER            INFO, LDB, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   A( 0: * ), B( LDB, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DPFTRS solves a system of linear equations A*X = B with a symmetric
 | 
						|
*> positive definite matrix A using the Cholesky factorization
 | 
						|
*> A = U**T*U or A = L*L**T computed by DPFTRF.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] TRANSR
 | 
						|
*> \verbatim
 | 
						|
*>          TRANSR is CHARACTER*1
 | 
						|
*>          = 'N':  The Normal TRANSR of RFP A is stored;
 | 
						|
*>          = 'T':  The Transpose TRANSR of RFP A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangle of RFP A is stored;
 | 
						|
*>          = 'L':  Lower triangle of RFP A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrix B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ).
 | 
						|
*>          The triangular factor U or L from the Cholesky factorization
 | 
						|
*>          of RFP A = U**T*U or RFP A = L*L**T, as computed by DPFTRF.
 | 
						|
*>          See note below for more details about RFP A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the right hand side matrix B.
 | 
						|
*>          On exit, the solution matrix X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  We first consider Rectangular Full Packed (RFP) Format when N is
 | 
						|
*>  even. We give an example where N = 6.
 | 
						|
*>
 | 
						|
*>      AP is Upper             AP is Lower
 | 
						|
*>
 | 
						|
*>   00 01 02 03 04 05       00
 | 
						|
*>      11 12 13 14 15       10 11
 | 
						|
*>         22 23 24 25       20 21 22
 | 
						|
*>            33 34 35       30 31 32 33
 | 
						|
*>               44 45       40 41 42 43 44
 | 
						|
*>                  55       50 51 52 53 54 55
 | 
						|
*>
 | 
						|
*>
 | 
						|
*>  Let TRANSR = 'N'. RFP holds AP as follows:
 | 
						|
*>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
 | 
						|
*>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
 | 
						|
*>  the transpose of the first three columns of AP upper.
 | 
						|
*>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
 | 
						|
*>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
 | 
						|
*>  the transpose of the last three columns of AP lower.
 | 
						|
*>  This covers the case N even and TRANSR = 'N'.
 | 
						|
*>
 | 
						|
*>         RFP A                   RFP A
 | 
						|
*>
 | 
						|
*>        03 04 05                33 43 53
 | 
						|
*>        13 14 15                00 44 54
 | 
						|
*>        23 24 25                10 11 55
 | 
						|
*>        33 34 35                20 21 22
 | 
						|
*>        00 44 45                30 31 32
 | 
						|
*>        01 11 55                40 41 42
 | 
						|
*>        02 12 22                50 51 52
 | 
						|
*>
 | 
						|
*>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
 | 
						|
*>  transpose of RFP A above. One therefore gets:
 | 
						|
*>
 | 
						|
*>
 | 
						|
*>           RFP A                   RFP A
 | 
						|
*>
 | 
						|
*>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
 | 
						|
*>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
 | 
						|
*>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
 | 
						|
*>
 | 
						|
*>
 | 
						|
*>  We then consider Rectangular Full Packed (RFP) Format when N is
 | 
						|
*>  odd. We give an example where N = 5.
 | 
						|
*>
 | 
						|
*>     AP is Upper                 AP is Lower
 | 
						|
*>
 | 
						|
*>   00 01 02 03 04              00
 | 
						|
*>      11 12 13 14              10 11
 | 
						|
*>         22 23 24              20 21 22
 | 
						|
*>            33 34              30 31 32 33
 | 
						|
*>               44              40 41 42 43 44
 | 
						|
*>
 | 
						|
*>
 | 
						|
*>  Let TRANSR = 'N'. RFP holds AP as follows:
 | 
						|
*>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
 | 
						|
*>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
 | 
						|
*>  the transpose of the first two columns of AP upper.
 | 
						|
*>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
 | 
						|
*>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
 | 
						|
*>  the transpose of the last two columns of AP lower.
 | 
						|
*>  This covers the case N odd and TRANSR = 'N'.
 | 
						|
*>
 | 
						|
*>         RFP A                   RFP A
 | 
						|
*>
 | 
						|
*>        02 03 04                00 33 43
 | 
						|
*>        12 13 14                10 11 44
 | 
						|
*>        22 23 24                20 21 22
 | 
						|
*>        00 33 34                30 31 32
 | 
						|
*>        01 11 44                40 41 42
 | 
						|
*>
 | 
						|
*>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
 | 
						|
*>  transpose of RFP A above. One therefore gets:
 | 
						|
*>
 | 
						|
*>           RFP A                   RFP A
 | 
						|
*>
 | 
						|
*>     02 12 22 00 01             00 10 20 30 40 50
 | 
						|
*>     03 13 23 33 11             33 11 21 31 41 51
 | 
						|
*>     04 14 24 34 44             43 44 22 32 42 52
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          TRANSR, UPLO
 | 
						|
      INTEGER            INFO, LDB, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   A( 0: * ), B( LDB, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE
 | 
						|
      PARAMETER          ( ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LOWER, NORMALTRANSR
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA, DTFSM
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      NORMALTRANSR = LSAME( TRANSR, 'N' )
 | 
						|
      LOWER = LSAME( UPLO, 'L' )
 | 
						|
      IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DPFTRS', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     start execution: there are two triangular solves
 | 
						|
*
 | 
						|
      IF( LOWER ) THEN
 | 
						|
         CALL DTFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, ONE, A, B,
 | 
						|
     $               LDB )
 | 
						|
         CALL DTFSM( TRANSR, 'L', UPLO, 'T', 'N', N, NRHS, ONE, A, B,
 | 
						|
     $               LDB )
 | 
						|
      ELSE
 | 
						|
         CALL DTFSM( TRANSR, 'L', UPLO, 'T', 'N', N, NRHS, ONE, A, B,
 | 
						|
     $               LDB )
 | 
						|
         CALL DTFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, ONE, A, B,
 | 
						|
     $               LDB )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DPFTRS
 | 
						|
*
 | 
						|
      END
 |