897 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			897 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle_() continue;
 | |
| #define myceiling_(w) {ceil(w)}
 | |
| #define myhuge_(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__4 = 4;
 | |
| static integer c__8 = 8;
 | |
| 
 | |
| /* > \brief \b ZLAROT */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZLAROT( LROWS, LLEFT, LRIGHT, NL, C, S, A, LDA, XLEFT, */
 | |
| /*                          XRIGHT ) */
 | |
| 
 | |
| /*       LOGICAL            LLEFT, LRIGHT, LROWS */
 | |
| /*       INTEGER            LDA, NL */
 | |
| /*       COMPLEX*16         C, S, XLEFT, XRIGHT */
 | |
| /*       COMPLEX*16         A( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >    ZLAROT applies a (Givens) rotation to two adjacent rows or */
 | |
| /* >    columns, where one element of the first and/or last column/row */
 | |
| /* >    for use on matrices stored in some format other than GE, so */
 | |
| /* >    that elements of the matrix may be used or modified for which */
 | |
| /* >    no array element is provided. */
 | |
| /* > */
 | |
| /* >    One example is a symmetric matrix in SB format (bandwidth=4), for */
 | |
| /* >    which UPLO='L':  Two adjacent rows will have the format: */
 | |
| /* > */
 | |
| /* >    row j:     C> C> C> C> C> .  .  .  . */
 | |
| /* >    row j+1:      C> C> C> C> C> .  .  .  . */
 | |
| /* > */
 | |
| /* >    '*' indicates elements for which storage is provided, */
 | |
| /* >    '.' indicates elements for which no storage is provided, but */
 | |
| /* >    are not necessarily zero; their values are determined by */
 | |
| /* >    symmetry.  ' ' indicates elements which are necessarily zero, */
 | |
| /* >     and have no storage provided. */
 | |
| /* > */
 | |
| /* >    Those columns which have two '*'s can be handled by DROT. */
 | |
| /* >    Those columns which have no '*'s can be ignored, since as long */
 | |
| /* >    as the Givens rotations are carefully applied to preserve */
 | |
| /* >    symmetry, their values are determined. */
 | |
| /* >    Those columns which have one '*' have to be handled separately, */
 | |
| /* >    by using separate variables "p" and "q": */
 | |
| /* > */
 | |
| /* >    row j:     C> C> C> C> C> p  .  .  . */
 | |
| /* >    row j+1:   q  C> C> C> C> C> .  .  .  . */
 | |
| /* > */
 | |
| /* >    The element p would have to be set correctly, then that column */
 | |
| /* >    is rotated, setting p to its new value.  The next call to */
 | |
| /* >    ZLAROT would rotate columns j and j+1, using p, and restore */
 | |
| /* >    symmetry.  The element q would start out being zero, and be */
 | |
| /* >    made non-zero by the rotation.  Later, rotations would presumably */
 | |
| /* >    be chosen to zero q out. */
 | |
| /* > */
 | |
| /* >    Typical Calling Sequences: rotating the i-th and (i+1)-st rows. */
 | |
| /* >    ------- ------- --------- */
 | |
| /* > */
 | |
| /* >      General dense matrix: */
 | |
| /* > */
 | |
| /* >              CALL ZLAROT(.TRUE.,.FALSE.,.FALSE., N, C,S, */
 | |
| /* >                      A(i,1),LDA, DUMMY, DUMMY) */
 | |
| /* > */
 | |
| /* >      General banded matrix in GB format: */
 | |
| /* > */
 | |
| /* >              j = MAX(1, i-KL ) */
 | |
| /* >              NL = MIN( N, i+KU+1 ) + 1-j */
 | |
| /* >              CALL ZLAROT( .TRUE., i-KL.GE.1, i+KU.LT.N, NL, C,S, */
 | |
| /* >                      A(KU+i+1-j,j),LDA-1, XLEFT, XRIGHT ) */
 | |
| /* > */
 | |
| /* >              [ note that i+1-j is just MIN(i,KL+1) ] */
 | |
| /* > */
 | |
| /* >      Symmetric banded matrix in SY format, bandwidth K, */
 | |
| /* >      lower triangle only: */
 | |
| /* > */
 | |
| /* >              j = MAX(1, i-K ) */
 | |
| /* >              NL = MIN( K+1, i ) + 1 */
 | |
| /* >              CALL ZLAROT( .TRUE., i-K.GE.1, .TRUE., NL, C,S, */
 | |
| /* >                      A(i,j), LDA, XLEFT, XRIGHT ) */
 | |
| /* > */
 | |
| /* >      Same, but upper triangle only: */
 | |
| /* > */
 | |
| /* >              NL = MIN( K+1, N-i ) + 1 */
 | |
| /* >              CALL ZLAROT( .TRUE., .TRUE., i+K.LT.N, NL, C,S, */
 | |
| /* >                      A(i,i), LDA, XLEFT, XRIGHT ) */
 | |
| /* > */
 | |
| /* >      Symmetric banded matrix in SB format, bandwidth K, */
 | |
| /* >      lower triangle only: */
 | |
| /* > */
 | |
| /* >              [ same as for SY, except:] */
 | |
| /* >                  . . . . */
 | |
| /* >                      A(i+1-j,j), LDA-1, XLEFT, XRIGHT ) */
 | |
| /* > */
 | |
| /* >              [ note that i+1-j is just MIN(i,K+1) ] */
 | |
| /* > */
 | |
| /* >      Same, but upper triangle only: */
 | |
| /* >                  . . . */
 | |
| /* >                      A(K+1,i), LDA-1, XLEFT, XRIGHT ) */
 | |
| /* > */
 | |
| /* >      Rotating columns is just the transpose of rotating rows, except */
 | |
| /* >      for GB and SB: (rotating columns i and i+1) */
 | |
| /* > */
 | |
| /* >      GB: */
 | |
| /* >              j = MAX(1, i-KU ) */
 | |
| /* >              NL = MIN( N, i+KL+1 ) + 1-j */
 | |
| /* >              CALL ZLAROT( .TRUE., i-KU.GE.1, i+KL.LT.N, NL, C,S, */
 | |
| /* >                      A(KU+j+1-i,i),LDA-1, XTOP, XBOTTM ) */
 | |
| /* > */
 | |
| /* >              [note that KU+j+1-i is just MAX(1,KU+2-i)] */
 | |
| /* > */
 | |
| /* >      SB: (upper triangle) */
 | |
| /* > */
 | |
| /* >                   . . . . . . */
 | |
| /* >                      A(K+j+1-i,i),LDA-1, XTOP, XBOTTM ) */
 | |
| /* > */
 | |
| /* >      SB: (lower triangle) */
 | |
| /* > */
 | |
| /* >                   . . . . . . */
 | |
| /* >                      A(1,i),LDA-1, XTOP, XBOTTM ) */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \verbatim */
 | |
| /* >  LROWS  - LOGICAL */
 | |
| /* >           If .TRUE., then ZLAROT will rotate two rows.  If .FALSE., */
 | |
| /* >           then it will rotate two columns. */
 | |
| /* >           Not modified. */
 | |
| /* > */
 | |
| /* >  LLEFT  - LOGICAL */
 | |
| /* >           If .TRUE., then XLEFT will be used instead of the */
 | |
| /* >           corresponding element of A for the first element in the */
 | |
| /* >           second row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.) */
 | |
| /* >           If .FALSE., then the corresponding element of A will be */
 | |
| /* >           used. */
 | |
| /* >           Not modified. */
 | |
| /* > */
 | |
| /* >  LRIGHT - LOGICAL */
 | |
| /* >           If .TRUE., then XRIGHT will be used instead of the */
 | |
| /* >           corresponding element of A for the last element in the */
 | |
| /* >           first row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.) If */
 | |
| /* >           .FALSE., then the corresponding element of A will be used. */
 | |
| /* >           Not modified. */
 | |
| /* > */
 | |
| /* >  NL     - INTEGER */
 | |
| /* >           The length of the rows (if LROWS=.TRUE.) or columns (if */
 | |
| /* >           LROWS=.FALSE.) to be rotated.  If XLEFT and/or XRIGHT are */
 | |
| /* >           used, the columns/rows they are in should be included in */
 | |
| /* >           NL, e.g., if LLEFT = LRIGHT = .TRUE., then NL must be at */
 | |
| /* >           least 2.  The number of rows/columns to be rotated */
 | |
| /* >           exclusive of those involving XLEFT and/or XRIGHT may */
 | |
| /* >           not be negative, i.e., NL minus how many of LLEFT and */
 | |
| /* >           LRIGHT are .TRUE. must be at least zero; if not, XERBLA */
 | |
| /* >           will be called. */
 | |
| /* >           Not modified. */
 | |
| /* > */
 | |
| /* >  C, S   - COMPLEX*16 */
 | |
| /* >           Specify the Givens rotation to be applied.  If LROWS is */
 | |
| /* >           true, then the matrix ( c  s ) */
 | |
| /* >                                 ( _  _ ) */
 | |
| /* >                                 (-s  c )  is applied from the left; */
 | |
| /* >           if false, then the transpose (not conjugated) thereof is */
 | |
| /* >           applied from the right.  Note that in contrast to the */
 | |
| /* >           output of ZROTG or to most versions of ZROT, both C and S */
 | |
| /* >           are complex.  For a Givens rotation, |C|**2 + |S|**2 should */
 | |
| /* >           be 1, but this is not checked. */
 | |
| /* >           Not modified. */
 | |
| /* > */
 | |
| /* >  A      - COMPLEX*16 array. */
 | |
| /* >           The array containing the rows/columns to be rotated.  The */
 | |
| /* >           first element of A should be the upper left element to */
 | |
| /* >           be rotated. */
 | |
| /* >           Read and modified. */
 | |
| /* > */
 | |
| /* >  LDA    - INTEGER */
 | |
| /* >           The "effective" leading dimension of A.  If A contains */
 | |
| /* >           a matrix stored in GE, HE, or SY format, then this is just */
 | |
| /* >           the leading dimension of A as dimensioned in the calling */
 | |
| /* >           routine.  If A contains a matrix stored in band (GB, HB, or */
 | |
| /* >           SB) format, then this should be *one less* than the leading */
 | |
| /* >           dimension used in the calling routine.  Thus, if A were */
 | |
| /* >           dimensioned A(LDA,*) in ZLAROT, then A(1,j) would be the */
 | |
| /* >           j-th element in the first of the two rows to be rotated, */
 | |
| /* >           and A(2,j) would be the j-th in the second, regardless of */
 | |
| /* >           how the array may be stored in the calling routine.  [A */
 | |
| /* >           cannot, however, actually be dimensioned thus, since for */
 | |
| /* >           band format, the row number may exceed LDA, which is not */
 | |
| /* >           legal FORTRAN.] */
 | |
| /* >           If LROWS=.TRUE., then LDA must be at least 1, otherwise */
 | |
| /* >           it must be at least NL minus the number of .TRUE. values */
 | |
| /* >           in XLEFT and XRIGHT. */
 | |
| /* >           Not modified. */
 | |
| /* > */
 | |
| /* >  XLEFT  - COMPLEX*16 */
 | |
| /* >           If LLEFT is .TRUE., then XLEFT will be used and modified */
 | |
| /* >           instead of A(2,1) (if LROWS=.TRUE.) or A(1,2) */
 | |
| /* >           (if LROWS=.FALSE.). */
 | |
| /* >           Read and modified. */
 | |
| /* > */
 | |
| /* >  XRIGHT - COMPLEX*16 */
 | |
| /* >           If LRIGHT is .TRUE., then XRIGHT will be used and modified */
 | |
| /* >           instead of A(1,NL) (if LROWS=.TRUE.) or A(NL,1) */
 | |
| /* >           (if LROWS=.FALSE.). */
 | |
| /* >           Read and modified. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complex16_matgen */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ int zlarot_(logical *lrows, logical *lleft, logical *lright, 
 | |
| 	integer *nl, doublecomplex *c__, doublecomplex *s, doublecomplex *a, 
 | |
| 	integer *lda, doublecomplex *xleft, doublecomplex *xright)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1, i__2, i__3, i__4;
 | |
|     doublecomplex z__1, z__2, z__3, z__4, z__5, z__6;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer iinc, j, inext;
 | |
|     doublecomplex tempx;
 | |
|     integer ix, iy, nt;
 | |
|     doublecomplex xt[2], yt[2];
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *);
 | |
|     integer iyt;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Set up indices, arrays for ends */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --a;
 | |
| 
 | |
|     /* Function Body */
 | |
|     if (*lrows) {
 | |
| 	iinc = *lda;
 | |
| 	inext = 1;
 | |
|     } else {
 | |
| 	iinc = 1;
 | |
| 	inext = *lda;
 | |
|     }
 | |
| 
 | |
|     if (*lleft) {
 | |
| 	nt = 1;
 | |
| 	ix = iinc + 1;
 | |
| 	iy = *lda + 2;
 | |
| 	xt[0].r = a[1].r, xt[0].i = a[1].i;
 | |
| 	yt[0].r = xleft->r, yt[0].i = xleft->i;
 | |
|     } else {
 | |
| 	nt = 0;
 | |
| 	ix = 1;
 | |
| 	iy = inext + 1;
 | |
|     }
 | |
| 
 | |
|     if (*lright) {
 | |
| 	iyt = inext + 1 + (*nl - 1) * iinc;
 | |
| 	++nt;
 | |
| 	i__1 = nt - 1;
 | |
| 	xt[i__1].r = xright->r, xt[i__1].i = xright->i;
 | |
| 	i__1 = nt - 1;
 | |
| 	i__2 = iyt;
 | |
| 	yt[i__1].r = a[i__2].r, yt[i__1].i = a[i__2].i;
 | |
|     }
 | |
| 
 | |
| /*     Check for errors */
 | |
| 
 | |
|     if (*nl < nt) {
 | |
| 	xerbla_("ZLAROT", &c__4);
 | |
| 	return 0;
 | |
|     }
 | |
|     if (*lda <= 0 || ! (*lrows) && *lda < *nl - nt) {
 | |
| 	xerbla_("ZLAROT", &c__8);
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Rotate */
 | |
| 
 | |
| /*     ZROT( NL-NT, A(IX),IINC, A(IY),IINC, C, S ) with complex C, S */
 | |
| 
 | |
|     i__1 = *nl - nt - 1;
 | |
|     for (j = 0; j <= i__1; ++j) {
 | |
| 	i__2 = ix + j * iinc;
 | |
| 	z__2.r = c__->r * a[i__2].r - c__->i * a[i__2].i, z__2.i = c__->r * a[
 | |
| 		i__2].i + c__->i * a[i__2].r;
 | |
| 	i__3 = iy + j * iinc;
 | |
| 	z__3.r = s->r * a[i__3].r - s->i * a[i__3].i, z__3.i = s->r * a[i__3]
 | |
| 		.i + s->i * a[i__3].r;
 | |
| 	z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
 | |
| 	tempx.r = z__1.r, tempx.i = z__1.i;
 | |
| 	i__2 = iy + j * iinc;
 | |
| 	d_cnjg(&z__4, s);
 | |
| 	z__3.r = -z__4.r, z__3.i = -z__4.i;
 | |
| 	i__3 = ix + j * iinc;
 | |
| 	z__2.r = z__3.r * a[i__3].r - z__3.i * a[i__3].i, z__2.i = z__3.r * a[
 | |
| 		i__3].i + z__3.i * a[i__3].r;
 | |
| 	d_cnjg(&z__6, c__);
 | |
| 	i__4 = iy + j * iinc;
 | |
| 	z__5.r = z__6.r * a[i__4].r - z__6.i * a[i__4].i, z__5.i = z__6.r * a[
 | |
| 		i__4].i + z__6.i * a[i__4].r;
 | |
| 	z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
 | |
| 	a[i__2].r = z__1.r, a[i__2].i = z__1.i;
 | |
| 	i__2 = ix + j * iinc;
 | |
| 	a[i__2].r = tempx.r, a[i__2].i = tempx.i;
 | |
| /* L10: */
 | |
|     }
 | |
| 
 | |
| /*     ZROT( NT, XT,1, YT,1, C, S ) with complex C, S */
 | |
| 
 | |
|     i__1 = nt;
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	i__2 = j - 1;
 | |
| 	z__2.r = c__->r * xt[i__2].r - c__->i * xt[i__2].i, z__2.i = c__->r * 
 | |
| 		xt[i__2].i + c__->i * xt[i__2].r;
 | |
| 	i__3 = j - 1;
 | |
| 	z__3.r = s->r * yt[i__3].r - s->i * yt[i__3].i, z__3.i = s->r * yt[
 | |
| 		i__3].i + s->i * yt[i__3].r;
 | |
| 	z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
 | |
| 	tempx.r = z__1.r, tempx.i = z__1.i;
 | |
| 	i__2 = j - 1;
 | |
| 	d_cnjg(&z__4, s);
 | |
| 	z__3.r = -z__4.r, z__3.i = -z__4.i;
 | |
| 	i__3 = j - 1;
 | |
| 	z__2.r = z__3.r * xt[i__3].r - z__3.i * xt[i__3].i, z__2.i = z__3.r * 
 | |
| 		xt[i__3].i + z__3.i * xt[i__3].r;
 | |
| 	d_cnjg(&z__6, c__);
 | |
| 	i__4 = j - 1;
 | |
| 	z__5.r = z__6.r * yt[i__4].r - z__6.i * yt[i__4].i, z__5.i = z__6.r * 
 | |
| 		yt[i__4].i + z__6.i * yt[i__4].r;
 | |
| 	z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
 | |
| 	yt[i__2].r = z__1.r, yt[i__2].i = z__1.i;
 | |
| 	i__2 = j - 1;
 | |
| 	xt[i__2].r = tempx.r, xt[i__2].i = tempx.i;
 | |
| /* L20: */
 | |
|     }
 | |
| 
 | |
| /*     Stuff values back into XLEFT, XRIGHT, etc. */
 | |
| 
 | |
|     if (*lleft) {
 | |
| 	a[1].r = xt[0].r, a[1].i = xt[0].i;
 | |
| 	xleft->r = yt[0].r, xleft->i = yt[0].i;
 | |
|     }
 | |
| 
 | |
|     if (*lright) {
 | |
| 	i__1 = nt - 1;
 | |
| 	xright->r = xt[i__1].r, xright->i = xt[i__1].i;
 | |
| 	i__1 = iyt;
 | |
| 	i__2 = nt - 1;
 | |
| 	a[i__1].r = yt[i__2].r, a[i__1].i = yt[i__2].i;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| /*     End of ZLAROT */
 | |
| 
 | |
| } /* zlarot_ */
 | |
| 
 |