465 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			465 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZTRSNA
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZTRSNA + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrsna.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrsna.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrsna.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 | |
| *                          LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK,
 | |
| *                          INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          HOWMNY, JOB
 | |
| *       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            SELECT( * )
 | |
| *       DOUBLE PRECISION   RWORK( * ), S( * ), SEP( * )
 | |
| *       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
 | |
| *      $                   WORK( LDWORK, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZTRSNA estimates reciprocal condition numbers for specified
 | |
| *> eigenvalues and/or right eigenvectors of a complex upper triangular
 | |
| *> matrix T (or of any matrix Q*T*Q**H with Q unitary).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOB
 | |
| *> \verbatim
 | |
| *>          JOB is CHARACTER*1
 | |
| *>          Specifies whether condition numbers are required for
 | |
| *>          eigenvalues (S) or eigenvectors (SEP):
 | |
| *>          = 'E': for eigenvalues only (S);
 | |
| *>          = 'V': for eigenvectors only (SEP);
 | |
| *>          = 'B': for both eigenvalues and eigenvectors (S and SEP).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] HOWMNY
 | |
| *> \verbatim
 | |
| *>          HOWMNY is CHARACTER*1
 | |
| *>          = 'A': compute condition numbers for all eigenpairs;
 | |
| *>          = 'S': compute condition numbers for selected eigenpairs
 | |
| *>                 specified by the array SELECT.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SELECT
 | |
| *> \verbatim
 | |
| *>          SELECT is LOGICAL array, dimension (N)
 | |
| *>          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
 | |
| *>          condition numbers are required. To select condition numbers
 | |
| *>          for the j-th eigenpair, SELECT(j) must be set to .TRUE..
 | |
| *>          If HOWMNY = 'A', SELECT is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix T. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] T
 | |
| *> \verbatim
 | |
| *>          T is COMPLEX*16 array, dimension (LDT,N)
 | |
| *>          The upper triangular matrix T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T. LDT >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VL
 | |
| *> \verbatim
 | |
| *>          VL is COMPLEX*16 array, dimension (LDVL,M)
 | |
| *>          If JOB = 'E' or 'B', VL must contain left eigenvectors of T
 | |
| *>          (or of any Q*T*Q**H with Q unitary), corresponding to the
 | |
| *>          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
 | |
| *>          must be stored in consecutive columns of VL, as returned by
 | |
| *>          ZHSEIN or ZTREVC.
 | |
| *>          If JOB = 'V', VL is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVL
 | |
| *> \verbatim
 | |
| *>          LDVL is INTEGER
 | |
| *>          The leading dimension of the array VL.
 | |
| *>          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VR
 | |
| *> \verbatim
 | |
| *>          VR is COMPLEX*16 array, dimension (LDVR,M)
 | |
| *>          If JOB = 'E' or 'B', VR must contain right eigenvectors of T
 | |
| *>          (or of any Q*T*Q**H with Q unitary), corresponding to the
 | |
| *>          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
 | |
| *>          must be stored in consecutive columns of VR, as returned by
 | |
| *>          ZHSEIN or ZTREVC.
 | |
| *>          If JOB = 'V', VR is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVR
 | |
| *> \verbatim
 | |
| *>          LDVR is INTEGER
 | |
| *>          The leading dimension of the array VR.
 | |
| *>          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] S
 | |
| *> \verbatim
 | |
| *>          S is DOUBLE PRECISION array, dimension (MM)
 | |
| *>          If JOB = 'E' or 'B', the reciprocal condition numbers of the
 | |
| *>          selected eigenvalues, stored in consecutive elements of the
 | |
| *>          array. Thus S(j), SEP(j), and the j-th columns of VL and VR
 | |
| *>          all correspond to the same eigenpair (but not in general the
 | |
| *>          j-th eigenpair, unless all eigenpairs are selected).
 | |
| *>          If JOB = 'V', S is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SEP
 | |
| *> \verbatim
 | |
| *>          SEP is DOUBLE PRECISION array, dimension (MM)
 | |
| *>          If JOB = 'V' or 'B', the estimated reciprocal condition
 | |
| *>          numbers of the selected eigenvectors, stored in consecutive
 | |
| *>          elements of the array.
 | |
| *>          If JOB = 'E', SEP is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MM
 | |
| *> \verbatim
 | |
| *>          MM is INTEGER
 | |
| *>          The number of elements in the arrays S (if JOB = 'E' or 'B')
 | |
| *>           and/or SEP (if JOB = 'V' or 'B'). MM >= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of elements of the arrays S and/or SEP actually
 | |
| *>          used to store the estimated condition numbers.
 | |
| *>          If HOWMNY = 'A', M is set to N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (LDWORK,N+6)
 | |
| *>          If JOB = 'E', WORK is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDWORK
 | |
| *> \verbatim
 | |
| *>          LDWORK is INTEGER
 | |
| *>          The leading dimension of the array WORK.
 | |
| *>          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (N)
 | |
| *>          If JOB = 'E', RWORK is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date November 2017
 | |
| *
 | |
| *> \ingroup complex16OTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The reciprocal of the condition number of an eigenvalue lambda is
 | |
| *>  defined as
 | |
| *>
 | |
| *>          S(lambda) = |v**H*u| / (norm(u)*norm(v))
 | |
| *>
 | |
| *>  where u and v are the right and left eigenvectors of T corresponding
 | |
| *>  to lambda; v**H denotes the conjugate transpose of v, and norm(u)
 | |
| *>  denotes the Euclidean norm. These reciprocal condition numbers always
 | |
| *>  lie between zero (very badly conditioned) and one (very well
 | |
| *>  conditioned). If n = 1, S(lambda) is defined to be 1.
 | |
| *>
 | |
| *>  An approximate error bound for a computed eigenvalue W(i) is given by
 | |
| *>
 | |
| *>                      EPS * norm(T) / S(i)
 | |
| *>
 | |
| *>  where EPS is the machine precision.
 | |
| *>
 | |
| *>  The reciprocal of the condition number of the right eigenvector u
 | |
| *>  corresponding to lambda is defined as follows. Suppose
 | |
| *>
 | |
| *>              T = ( lambda  c  )
 | |
| *>                  (   0    T22 )
 | |
| *>
 | |
| *>  Then the reciprocal condition number is
 | |
| *>
 | |
| *>          SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
 | |
| *>
 | |
| *>  where sigma-min denotes the smallest singular value. We approximate
 | |
| *>  the smallest singular value by the reciprocal of an estimate of the
 | |
| *>  one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
 | |
| *>  defined to be abs(T(1,1)).
 | |
| *>
 | |
| *>  An approximate error bound for a computed right eigenvector VR(i)
 | |
| *>  is given by
 | |
| *>
 | |
| *>                      EPS * norm(T) / SEP(i)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 | |
|      $                   LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK,
 | |
|      $                   INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.8.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2017
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          HOWMNY, JOB
 | |
|       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            SELECT( * )
 | |
|       DOUBLE PRECISION   RWORK( * ), S( * ), SEP( * )
 | |
|       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
 | |
|      $                   WORK( LDWORK, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D0+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            SOMCON, WANTBH, WANTS, WANTSP
 | |
|       CHARACTER          NORMIN
 | |
|       INTEGER            I, IERR, IX, J, K, KASE, KS
 | |
|       DOUBLE PRECISION   BIGNUM, EPS, EST, LNRM, RNRM, SCALE, SMLNUM,
 | |
|      $                   XNORM
 | |
|       COMPLEX*16         CDUM, PROD
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISAVE( 3 )
 | |
|       COMPLEX*16         DUMMY( 1 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            IZAMAX
 | |
|       DOUBLE PRECISION   DLAMCH, DZNRM2
 | |
|       COMPLEX*16         ZDOTC
 | |
|       EXTERNAL           LSAME, IZAMAX, DLAMCH, DZNRM2, ZDOTC
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, ZDRSCL, ZLACN2, ZLACPY, ZLATRS, ZTREXC,
 | |
|      $                   DLABAD
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, DIMAG, MAX
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       DOUBLE PRECISION   CABS1
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode and test the input parameters
 | |
| *
 | |
|       WANTBH = LSAME( JOB, 'B' )
 | |
|       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
 | |
|       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
 | |
| *
 | |
|       SOMCON = LSAME( HOWMNY, 'S' )
 | |
| *
 | |
| *     Set M to the number of eigenpairs for which condition numbers are
 | |
| *     to be computed.
 | |
| *
 | |
|       IF( SOMCON ) THEN
 | |
|          M = 0
 | |
|          DO 10 J = 1, N
 | |
|             IF( SELECT( J ) )
 | |
|      $         M = M + 1
 | |
|    10    CONTINUE
 | |
|       ELSE
 | |
|          M = N
 | |
|       END IF
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.WANTS .AND. .NOT.WANTSP ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDVL.LT.1 .OR. ( WANTS .AND. LDVL.LT.N ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LDVR.LT.1 .OR. ( WANTS .AND. LDVR.LT.N ) ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( MM.LT.M ) THEN
 | |
|          INFO = -13
 | |
|       ELSE IF( LDWORK.LT.1 .OR. ( WANTSP .AND. LDWORK.LT.N ) ) THEN
 | |
|          INFO = -16
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZTRSNA', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          IF( SOMCON ) THEN
 | |
|             IF( .NOT.SELECT( 1 ) )
 | |
|      $         RETURN
 | |
|          END IF
 | |
|          IF( WANTS )
 | |
|      $      S( 1 ) = ONE
 | |
|          IF( WANTSP )
 | |
|      $      SEP( 1 ) = ABS( T( 1, 1 ) )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants
 | |
| *
 | |
|       EPS = DLAMCH( 'P' )
 | |
|       SMLNUM = DLAMCH( 'S' ) / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL DLABAD( SMLNUM, BIGNUM )
 | |
| *
 | |
|       KS = 1
 | |
|       DO 50 K = 1, N
 | |
| *
 | |
|          IF( SOMCON ) THEN
 | |
|             IF( .NOT.SELECT( K ) )
 | |
|      $         GO TO 50
 | |
|          END IF
 | |
| *
 | |
|          IF( WANTS ) THEN
 | |
| *
 | |
| *           Compute the reciprocal condition number of the k-th
 | |
| *           eigenvalue.
 | |
| *
 | |
|             PROD = ZDOTC( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
 | |
|             RNRM = DZNRM2( N, VR( 1, KS ), 1 )
 | |
|             LNRM = DZNRM2( N, VL( 1, KS ), 1 )
 | |
|             S( KS ) = ABS( PROD ) / ( RNRM*LNRM )
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|          IF( WANTSP ) THEN
 | |
| *
 | |
| *           Estimate the reciprocal condition number of the k-th
 | |
| *           eigenvector.
 | |
| *
 | |
| *           Copy the matrix T to the array WORK and swap the k-th
 | |
| *           diagonal element to the (1,1) position.
 | |
| *
 | |
|             CALL ZLACPY( 'Full', N, N, T, LDT, WORK, LDWORK )
 | |
|             CALL ZTREXC( 'No Q', N, WORK, LDWORK, DUMMY, 1, K, 1, IERR )
 | |
| *
 | |
| *           Form  C = T22 - lambda*I in WORK(2:N,2:N).
 | |
| *
 | |
|             DO 20 I = 2, N
 | |
|                WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 )
 | |
|    20       CONTINUE
 | |
| *
 | |
| *           Estimate a lower bound for the 1-norm of inv(C**H). The 1st
 | |
| *           and (N+1)th columns of WORK are used to store work vectors.
 | |
| *
 | |
|             SEP( KS ) = ZERO
 | |
|             EST = ZERO
 | |
|             KASE = 0
 | |
|             NORMIN = 'N'
 | |
|    30       CONTINUE
 | |
|             CALL ZLACN2( N-1, WORK( 1, N+1 ), WORK, EST, KASE, ISAVE )
 | |
| *
 | |
|             IF( KASE.NE.0 ) THEN
 | |
|                IF( KASE.EQ.1 ) THEN
 | |
| *
 | |
| *                 Solve C**H*x = scale*b
 | |
| *
 | |
|                   CALL ZLATRS( 'Upper', 'Conjugate transpose',
 | |
|      $                         'Nonunit', NORMIN, N-1, WORK( 2, 2 ),
 | |
|      $                         LDWORK, WORK, SCALE, RWORK, IERR )
 | |
|                ELSE
 | |
| *
 | |
| *                 Solve C*x = scale*b
 | |
| *
 | |
|                   CALL ZLATRS( 'Upper', 'No transpose', 'Nonunit',
 | |
|      $                         NORMIN, N-1, WORK( 2, 2 ), LDWORK, WORK,
 | |
|      $                         SCALE, RWORK, IERR )
 | |
|                END IF
 | |
|                NORMIN = 'Y'
 | |
|                IF( SCALE.NE.ONE ) THEN
 | |
| *
 | |
| *                 Multiply by 1/SCALE if doing so will not cause
 | |
| *                 overflow.
 | |
| *
 | |
|                   IX = IZAMAX( N-1, WORK, 1 )
 | |
|                   XNORM = CABS1( WORK( IX, 1 ) )
 | |
|                   IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
 | |
|      $               GO TO 40
 | |
|                   CALL ZDRSCL( N, SCALE, WORK, 1 )
 | |
|                END IF
 | |
|                GO TO 30
 | |
|             END IF
 | |
| *
 | |
|             SEP( KS ) = ONE / MAX( EST, SMLNUM )
 | |
|          END IF
 | |
| *
 | |
|    40    CONTINUE
 | |
|          KS = KS + 1
 | |
|    50 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZTRSNA
 | |
| *
 | |
|       END
 |