953 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			953 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZSYTF2_RK computes the factorization of a complex symmetric indefinite matrix using the bounded Bunch-Kaufman (rook) diagonal pivoting method (BLAS2 unblocked algorithm).
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZSYTF2_RK + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytf2_rk.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytf2_rk.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytf2_rk.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZSYTF2_RK( UPLO, N, A, LDA, E, IPIV, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, LDA, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       COMPLEX*16         A( LDA, * ), E ( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *> ZSYTF2_RK computes the factorization of a complex symmetric matrix A
 | |
| *> using the bounded Bunch-Kaufman (rook) diagonal pivoting method:
 | |
| *>
 | |
| *>    A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
 | |
| *>
 | |
| *> where U (or L) is unit upper (or lower) triangular matrix,
 | |
| *> U**T (or L**T) is the transpose of U (or L), P is a permutation
 | |
| *> matrix, P**T is the transpose of P, and D is symmetric and block
 | |
| *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
 | |
| *>
 | |
| *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
 | |
| *> For more information see Further Details section.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          symmetric matrix A is stored:
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          On entry, the symmetric matrix A.
 | |
| *>            If UPLO = 'U': the leading N-by-N upper triangular part
 | |
| *>            of A contains the upper triangular part of the matrix A,
 | |
| *>            and the strictly lower triangular part of A is not
 | |
| *>            referenced.
 | |
| *>
 | |
| *>            If UPLO = 'L': the leading N-by-N lower triangular part
 | |
| *>            of A contains the lower triangular part of the matrix A,
 | |
| *>            and the strictly upper triangular part of A is not
 | |
| *>            referenced.
 | |
| *>
 | |
| *>          On exit, contains:
 | |
| *>            a) ONLY diagonal elements of the symmetric block diagonal
 | |
| *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
 | |
| *>               (superdiagonal (or subdiagonal) elements of D
 | |
| *>                are stored on exit in array E), and
 | |
| *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
 | |
| *>               If UPLO = 'L': factor L in the subdiagonal part of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] E
 | |
| *> \verbatim
 | |
| *>          E is COMPLEX*16 array, dimension (N)
 | |
| *>          On exit, contains the superdiagonal (or subdiagonal)
 | |
| *>          elements of the symmetric block diagonal matrix D
 | |
| *>          with 1-by-1 or 2-by-2 diagonal blocks, where
 | |
| *>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
 | |
| *>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
 | |
| *>
 | |
| *>          NOTE: For 1-by-1 diagonal block D(k), where
 | |
| *>          1 <= k <= N, the element E(k) is set to 0 in both
 | |
| *>          UPLO = 'U' or UPLO = 'L' cases.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          IPIV describes the permutation matrix P in the factorization
 | |
| *>          of matrix A as follows. The absolute value of IPIV(k)
 | |
| *>          represents the index of row and column that were
 | |
| *>          interchanged with the k-th row and column. The value of UPLO
 | |
| *>          describes the order in which the interchanges were applied.
 | |
| *>          Also, the sign of IPIV represents the block structure of
 | |
| *>          the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
 | |
| *>          diagonal blocks which correspond to 1 or 2 interchanges
 | |
| *>          at each factorization step. For more info see Further
 | |
| *>          Details section.
 | |
| *>
 | |
| *>          If UPLO = 'U',
 | |
| *>          ( in factorization order, k decreases from N to 1 ):
 | |
| *>            a) A single positive entry IPIV(k) > 0 means:
 | |
| *>               D(k,k) is a 1-by-1 diagonal block.
 | |
| *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
 | |
| *>               interchanged in the matrix A(1:N,1:N);
 | |
| *>               If IPIV(k) = k, no interchange occurred.
 | |
| *>
 | |
| *>            b) A pair of consecutive negative entries
 | |
| *>               IPIV(k) < 0 and IPIV(k-1) < 0 means:
 | |
| *>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
 | |
| *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
 | |
| *>               1) If -IPIV(k) != k, rows and columns
 | |
| *>                  k and -IPIV(k) were interchanged
 | |
| *>                  in the matrix A(1:N,1:N).
 | |
| *>                  If -IPIV(k) = k, no interchange occurred.
 | |
| *>               2) If -IPIV(k-1) != k-1, rows and columns
 | |
| *>                  k-1 and -IPIV(k-1) were interchanged
 | |
| *>                  in the matrix A(1:N,1:N).
 | |
| *>                  If -IPIV(k-1) = k-1, no interchange occurred.
 | |
| *>
 | |
| *>            c) In both cases a) and b), always ABS( IPIV(k) ) <= k.
 | |
| *>
 | |
| *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
 | |
| *>
 | |
| *>          If UPLO = 'L',
 | |
| *>          ( in factorization order, k increases from 1 to N ):
 | |
| *>            a) A single positive entry IPIV(k) > 0 means:
 | |
| *>               D(k,k) is a 1-by-1 diagonal block.
 | |
| *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
 | |
| *>               interchanged in the matrix A(1:N,1:N).
 | |
| *>               If IPIV(k) = k, no interchange occurred.
 | |
| *>
 | |
| *>            b) A pair of consecutive negative entries
 | |
| *>               IPIV(k) < 0 and IPIV(k+1) < 0 means:
 | |
| *>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
 | |
| *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
 | |
| *>               1) If -IPIV(k) != k, rows and columns
 | |
| *>                  k and -IPIV(k) were interchanged
 | |
| *>                  in the matrix A(1:N,1:N).
 | |
| *>                  If -IPIV(k) = k, no interchange occurred.
 | |
| *>               2) If -IPIV(k+1) != k+1, rows and columns
 | |
| *>                  k-1 and -IPIV(k-1) were interchanged
 | |
| *>                  in the matrix A(1:N,1:N).
 | |
| *>                  If -IPIV(k+1) = k+1, no interchange occurred.
 | |
| *>
 | |
| *>            c) In both cases a) and b), always ABS( IPIV(k) ) >= k.
 | |
| *>
 | |
| *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>
 | |
| *>          < 0: If INFO = -k, the k-th argument had an illegal value
 | |
| *>
 | |
| *>          > 0: If INFO = k, the matrix A is singular, because:
 | |
| *>                 If UPLO = 'U': column k in the upper
 | |
| *>                 triangular part of A contains all zeros.
 | |
| *>                 If UPLO = 'L': column k in the lower
 | |
| *>                 triangular part of A contains all zeros.
 | |
| *>
 | |
| *>               Therefore D(k,k) is exactly zero, and superdiagonal
 | |
| *>               elements of column k of U (or subdiagonal elements of
 | |
| *>               column k of L ) are all zeros. The factorization has
 | |
| *>               been completed, but the block diagonal matrix D is
 | |
| *>               exactly singular, and division by zero will occur if
 | |
| *>               it is used to solve a system of equations.
 | |
| *>
 | |
| *>               NOTE: INFO only stores the first occurrence of
 | |
| *>               a singularity, any subsequent occurrence of singularity
 | |
| *>               is not stored in INFO even though the factorization
 | |
| *>               always completes.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complex16SYcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *> TODO: put further details
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  December 2016,  Igor Kozachenko,
 | |
| *>                  Computer Science Division,
 | |
| *>                  University of California, Berkeley
 | |
| *>
 | |
| *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
 | |
| *>                  School of Mathematics,
 | |
| *>                  University of Manchester
 | |
| *>
 | |
| *>  01-01-96 - Based on modifications by
 | |
| *>    J. Lewis, Boeing Computer Services Company
 | |
| *>    A. Petitet, Computer Science Dept.,
 | |
| *>                Univ. of Tenn., Knoxville abd , USA
 | |
| *> \endverbatim
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZSYTF2_RK( UPLO, N, A, LDA, E, IPIV, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, LDA, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       COMPLEX*16         A( LDA, * ), E( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
|       DOUBLE PRECISION   EIGHT, SEVTEN
 | |
|       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
 | |
|       COMPLEX*16         CONE, CZERO
 | |
|       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
 | |
|      $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER, DONE
 | |
|       INTEGER            I, IMAX, J, JMAX, ITEMP, K, KK, KP, KSTEP,
 | |
|      $                   P, II
 | |
|       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, ROWMAX, DTEMP, SFMIN
 | |
|       COMPLEX*16         D11, D12, D21, D22, T, WK, WKM1, WKP1, Z
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            IZAMAX
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           LSAME, IZAMAX, DLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZSCAL, ZSWAP, ZSYR, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, SQRT, DIMAG, DBLE
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       DOUBLE PRECISION   CABS1
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZSYTF2_RK', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Initialize ALPHA for use in choosing pivot block size.
 | |
| *
 | |
|       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
 | |
| *
 | |
| *     Compute machine safe minimum
 | |
| *
 | |
|       SFMIN = DLAMCH( 'S' )
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Factorize A as U*D*U**T using the upper triangle of A
 | |
| *
 | |
| *        Initialize the first entry of array E, where superdiagonal
 | |
| *        elements of D are stored
 | |
| *
 | |
|          E( 1 ) = CZERO
 | |
| *
 | |
| *        K is the main loop index, decreasing from N to 1 in steps of
 | |
| *        1 or 2
 | |
| *
 | |
|          K = N
 | |
|    10    CONTINUE
 | |
| *
 | |
| *        If K < 1, exit from loop
 | |
| *
 | |
|          IF( K.LT.1 )
 | |
|      $      GO TO 34
 | |
|          KSTEP = 1
 | |
|          P = K
 | |
| *
 | |
| *        Determine rows and columns to be interchanged and whether
 | |
| *        a 1-by-1 or 2-by-2 pivot block will be used
 | |
| *
 | |
|          ABSAKK = CABS1( A( K, K ) )
 | |
| *
 | |
| *        IMAX is the row-index of the largest off-diagonal element in
 | |
| *        column K, and COLMAX is its absolute value.
 | |
| *        Determine both COLMAX and IMAX.
 | |
| *
 | |
|          IF( K.GT.1 ) THEN
 | |
|             IMAX = IZAMAX( K-1, A( 1, K ), 1 )
 | |
|             COLMAX = CABS1( A( IMAX, K ) )
 | |
|          ELSE
 | |
|             COLMAX = ZERO
 | |
|          END IF
 | |
| *
 | |
|          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) ) THEN
 | |
| *
 | |
| *           Column K is zero or underflow: set INFO and continue
 | |
| *
 | |
|             IF( INFO.EQ.0 )
 | |
|      $         INFO = K
 | |
|             KP = K
 | |
| *
 | |
| *           Set E( K ) to zero
 | |
| *
 | |
|             IF( K.GT.1 )
 | |
|      $         E( K ) = CZERO
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Test for interchange
 | |
| *
 | |
| *           Equivalent to testing for (used to handle NaN and Inf)
 | |
| *           ABSAKK.GE.ALPHA*COLMAX
 | |
| *
 | |
|             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
 | |
| *
 | |
| *              no interchange,
 | |
| *              use 1-by-1 pivot block
 | |
| *
 | |
|                KP = K
 | |
|             ELSE
 | |
| *
 | |
|                DONE = .FALSE.
 | |
| *
 | |
| *              Loop until pivot found
 | |
| *
 | |
|    12          CONTINUE
 | |
| *
 | |
| *                 Begin pivot search loop body
 | |
| *
 | |
| *                 JMAX is the column-index of the largest off-diagonal
 | |
| *                 element in row IMAX, and ROWMAX is its absolute value.
 | |
| *                 Determine both ROWMAX and JMAX.
 | |
| *
 | |
|                   IF( IMAX.NE.K ) THEN
 | |
|                      JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ),
 | |
|      $                                    LDA )
 | |
|                      ROWMAX = CABS1( A( IMAX, JMAX ) )
 | |
|                   ELSE
 | |
|                      ROWMAX = ZERO
 | |
|                   END IF
 | |
| *
 | |
|                   IF( IMAX.GT.1 ) THEN
 | |
|                      ITEMP = IZAMAX( IMAX-1, A( 1, IMAX ), 1 )
 | |
|                      DTEMP = CABS1( A( ITEMP, IMAX ) )
 | |
|                      IF( DTEMP.GT.ROWMAX ) THEN
 | |
|                         ROWMAX = DTEMP
 | |
|                         JMAX = ITEMP
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *                 Equivalent to testing for (used to handle NaN and Inf)
 | |
| *                 ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX
 | |
| *
 | |
|                   IF( .NOT.( CABS1( A( IMAX, IMAX ) ).LT.ALPHA*ROWMAX ))
 | |
|      $            THEN
 | |
| *
 | |
| *                    interchange rows and columns K and IMAX,
 | |
| *                    use 1-by-1 pivot block
 | |
| *
 | |
|                      KP = IMAX
 | |
|                      DONE = .TRUE.
 | |
| *
 | |
| *                 Equivalent to testing for ROWMAX .EQ. COLMAX,
 | |
| *                 used to handle NaN and Inf
 | |
| *
 | |
|                   ELSE IF( ( P.EQ.JMAX ).OR.( ROWMAX.LE.COLMAX ) ) THEN
 | |
| *
 | |
| *                    interchange rows and columns K+1 and IMAX,
 | |
| *                    use 2-by-2 pivot block
 | |
| *
 | |
|                      KP = IMAX
 | |
|                      KSTEP = 2
 | |
|                      DONE = .TRUE.
 | |
|                   ELSE
 | |
| *
 | |
| *                    Pivot NOT found, set variables and repeat
 | |
| *
 | |
|                      P = IMAX
 | |
|                      COLMAX = ROWMAX
 | |
|                      IMAX = JMAX
 | |
|                   END IF
 | |
| *
 | |
| *                 End pivot search loop body
 | |
| *
 | |
|                IF( .NOT. DONE ) GOTO 12
 | |
| *
 | |
|             END IF
 | |
| *
 | |
| *           Swap TWO rows and TWO columns
 | |
| *
 | |
| *           First swap
 | |
| *
 | |
|             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
 | |
| *
 | |
| *              Interchange rows and column K and P in the leading
 | |
| *              submatrix A(1:k,1:k) if we have a 2-by-2 pivot
 | |
| *
 | |
|                IF( P.GT.1 )
 | |
|      $            CALL ZSWAP( P-1, A( 1, K ), 1, A( 1, P ), 1 )
 | |
|                IF( P.LT.(K-1) )
 | |
|      $            CALL ZSWAP( K-P-1, A( P+1, K ), 1, A( P, P+1 ),
 | |
|      $                     LDA )
 | |
|                T = A( K, K )
 | |
|                A( K, K ) = A( P, P )
 | |
|                A( P, P ) = T
 | |
| *
 | |
| *              Convert upper triangle of A into U form by applying
 | |
| *              the interchanges in columns k+1:N.
 | |
| *
 | |
|                IF( K.LT.N )
 | |
|      $            CALL ZSWAP( N-K, A( K, K+1 ), LDA, A( P, K+1 ), LDA )
 | |
| *
 | |
|             END IF
 | |
| *
 | |
| *           Second swap
 | |
| *
 | |
|             KK = K - KSTEP + 1
 | |
|             IF( KP.NE.KK ) THEN
 | |
| *
 | |
| *              Interchange rows and columns KK and KP in the leading
 | |
| *              submatrix A(1:k,1:k)
 | |
| *
 | |
|                IF( KP.GT.1 )
 | |
|      $            CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
 | |
|                IF( ( KK.GT.1 ) .AND. ( KP.LT.(KK-1) ) )
 | |
|      $            CALL ZSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
 | |
|      $                     LDA )
 | |
|                T = A( KK, KK )
 | |
|                A( KK, KK ) = A( KP, KP )
 | |
|                A( KP, KP ) = T
 | |
|                IF( KSTEP.EQ.2 ) THEN
 | |
|                   T = A( K-1, K )
 | |
|                   A( K-1, K ) = A( KP, K )
 | |
|                   A( KP, K ) = T
 | |
|                END IF
 | |
| *
 | |
| *              Convert upper triangle of A into U form by applying
 | |
| *              the interchanges in columns k+1:N.
 | |
| *
 | |
|                IF( K.LT.N )
 | |
|      $            CALL ZSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
 | |
|      $                        LDA )
 | |
| *
 | |
|             END IF
 | |
| *
 | |
| *           Update the leading submatrix
 | |
| *
 | |
|             IF( KSTEP.EQ.1 ) THEN
 | |
| *
 | |
| *              1-by-1 pivot block D(k): column k now holds
 | |
| *
 | |
| *              W(k) = U(k)*D(k)
 | |
| *
 | |
| *              where U(k) is the k-th column of U
 | |
| *
 | |
|                IF( K.GT.1 ) THEN
 | |
| *
 | |
| *                 Perform a rank-1 update of A(1:k-1,1:k-1) and
 | |
| *                 store U(k) in column k
 | |
| *
 | |
|                   IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
 | |
| *
 | |
| *                    Perform a rank-1 update of A(1:k-1,1:k-1) as
 | |
| *                    A := A - U(k)*D(k)*U(k)**T
 | |
| *                       = A - W(k)*1/D(k)*W(k)**T
 | |
| *
 | |
|                      D11 = CONE / A( K, K )
 | |
|                      CALL ZSYR( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
 | |
| *
 | |
| *                    Store U(k) in column k
 | |
| *
 | |
|                      CALL ZSCAL( K-1, D11, A( 1, K ), 1 )
 | |
|                   ELSE
 | |
| *
 | |
| *                    Store L(k) in column K
 | |
| *
 | |
|                      D11 = A( K, K )
 | |
|                      DO 16 II = 1, K - 1
 | |
|                         A( II, K ) = A( II, K ) / D11
 | |
|    16                CONTINUE
 | |
| *
 | |
| *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
 | |
| *                    A := A - U(k)*D(k)*U(k)**T
 | |
| *                       = A - W(k)*(1/D(k))*W(k)**T
 | |
| *                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
 | |
| *
 | |
|                      CALL ZSYR( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
 | |
|                   END IF
 | |
| *
 | |
| *                 Store the superdiagonal element of D in array E
 | |
| *
 | |
|                   E( K ) = CZERO
 | |
| *
 | |
|                END IF
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              2-by-2 pivot block D(k): columns k and k-1 now hold
 | |
| *
 | |
| *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
 | |
| *
 | |
| *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
 | |
| *              of U
 | |
| *
 | |
| *              Perform a rank-2 update of A(1:k-2,1:k-2) as
 | |
| *
 | |
| *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
 | |
| *                 = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T
 | |
| *
 | |
| *              and store L(k) and L(k+1) in columns k and k+1
 | |
| *
 | |
|                IF( K.GT.2 ) THEN
 | |
| *
 | |
|                   D12 = A( K-1, K )
 | |
|                   D22 = A( K-1, K-1 ) / D12
 | |
|                   D11 = A( K, K ) / D12
 | |
|                   T = CONE / ( D11*D22-CONE )
 | |
| *
 | |
|                   DO 30 J = K - 2, 1, -1
 | |
| *
 | |
|                      WKM1 = T*( D11*A( J, K-1 )-A( J, K ) )
 | |
|                      WK = T*( D22*A( J, K )-A( J, K-1 ) )
 | |
| *
 | |
|                      DO 20 I = J, 1, -1
 | |
|                         A( I, J ) = A( I, J ) - (A( I, K ) / D12 )*WK -
 | |
|      $                              ( A( I, K-1 ) / D12 )*WKM1
 | |
|    20                CONTINUE
 | |
| *
 | |
| *                    Store U(k) and U(k-1) in cols k and k-1 for row J
 | |
| *
 | |
|                      A( J, K ) = WK / D12
 | |
|                      A( J, K-1 ) = WKM1 / D12
 | |
| *
 | |
|    30             CONTINUE
 | |
| *
 | |
|                END IF
 | |
| *
 | |
| *              Copy superdiagonal elements of D(K) to E(K) and
 | |
| *              ZERO out superdiagonal entry of A
 | |
| *
 | |
|                E( K ) = A( K-1, K )
 | |
|                E( K-1 ) = CZERO
 | |
|                A( K-1, K ) = CZERO
 | |
| *
 | |
|             END IF
 | |
| *
 | |
| *           End column K is nonsingular
 | |
| *
 | |
|          END IF
 | |
| *
 | |
| *        Store details of the interchanges in IPIV
 | |
| *
 | |
|          IF( KSTEP.EQ.1 ) THEN
 | |
|             IPIV( K ) = KP
 | |
|          ELSE
 | |
|             IPIV( K ) = -P
 | |
|             IPIV( K-1 ) = -KP
 | |
|          END IF
 | |
| *
 | |
| *        Decrease K and return to the start of the main loop
 | |
| *
 | |
|          K = K - KSTEP
 | |
|          GO TO 10
 | |
| *
 | |
|    34    CONTINUE
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Factorize A as L*D*L**T using the lower triangle of A
 | |
| *
 | |
| *        Initialize the unused last entry of the subdiagonal array E.
 | |
| *
 | |
|          E( N ) = CZERO
 | |
| *
 | |
| *        K is the main loop index, increasing from 1 to N in steps of
 | |
| *        1 or 2
 | |
| *
 | |
|          K = 1
 | |
|    40    CONTINUE
 | |
| *
 | |
| *        If K > N, exit from loop
 | |
| *
 | |
|          IF( K.GT.N )
 | |
|      $      GO TO 64
 | |
|          KSTEP = 1
 | |
|          P = K
 | |
| *
 | |
| *        Determine rows and columns to be interchanged and whether
 | |
| *        a 1-by-1 or 2-by-2 pivot block will be used
 | |
| *
 | |
|          ABSAKK = CABS1( A( K, K ) )
 | |
| *
 | |
| *        IMAX is the row-index of the largest off-diagonal element in
 | |
| *        column K, and COLMAX is its absolute value.
 | |
| *        Determine both COLMAX and IMAX.
 | |
| *
 | |
|          IF( K.LT.N ) THEN
 | |
|             IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 )
 | |
|             COLMAX = CABS1( A( IMAX, K ) )
 | |
|          ELSE
 | |
|             COLMAX = ZERO
 | |
|          END IF
 | |
| *
 | |
|          IF( ( MAX( ABSAKK, COLMAX ).EQ.ZERO ) ) THEN
 | |
| *
 | |
| *           Column K is zero or underflow: set INFO and continue
 | |
| *
 | |
|             IF( INFO.EQ.0 )
 | |
|      $         INFO = K
 | |
|             KP = K
 | |
| *
 | |
| *           Set E( K ) to zero
 | |
| *
 | |
|             IF( K.LT.N )
 | |
|      $         E( K ) = CZERO
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Test for interchange
 | |
| *
 | |
| *           Equivalent to testing for (used to handle NaN and Inf)
 | |
| *           ABSAKK.GE.ALPHA*COLMAX
 | |
| *
 | |
|             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
 | |
| *
 | |
| *              no interchange, use 1-by-1 pivot block
 | |
| *
 | |
|                KP = K
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
|                DONE = .FALSE.
 | |
| *
 | |
| *              Loop until pivot found
 | |
| *
 | |
|    42          CONTINUE
 | |
| *
 | |
| *                 Begin pivot search loop body
 | |
| *
 | |
| *                 JMAX is the column-index of the largest off-diagonal
 | |
| *                 element in row IMAX, and ROWMAX is its absolute value.
 | |
| *                 Determine both ROWMAX and JMAX.
 | |
| *
 | |
|                   IF( IMAX.NE.K ) THEN
 | |
|                      JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
 | |
|                      ROWMAX = CABS1( A( IMAX, JMAX ) )
 | |
|                   ELSE
 | |
|                      ROWMAX = ZERO
 | |
|                   END IF
 | |
| *
 | |
|                   IF( IMAX.LT.N ) THEN
 | |
|                      ITEMP = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ),
 | |
|      $                                     1 )
 | |
|                      DTEMP = CABS1( A( ITEMP, IMAX ) )
 | |
|                      IF( DTEMP.GT.ROWMAX ) THEN
 | |
|                         ROWMAX = DTEMP
 | |
|                         JMAX = ITEMP
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *                 Equivalent to testing for (used to handle NaN and Inf)
 | |
| *                 ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX
 | |
| *
 | |
|                   IF( .NOT.( CABS1( A( IMAX, IMAX ) ).LT.ALPHA*ROWMAX ))
 | |
|      $            THEN
 | |
| *
 | |
| *                    interchange rows and columns K and IMAX,
 | |
| *                    use 1-by-1 pivot block
 | |
| *
 | |
|                      KP = IMAX
 | |
|                      DONE = .TRUE.
 | |
| *
 | |
| *                 Equivalent to testing for ROWMAX .EQ. COLMAX,
 | |
| *                 used to handle NaN and Inf
 | |
| *
 | |
|                   ELSE IF( ( P.EQ.JMAX ).OR.( ROWMAX.LE.COLMAX ) ) THEN
 | |
| *
 | |
| *                    interchange rows and columns K+1 and IMAX,
 | |
| *                    use 2-by-2 pivot block
 | |
| *
 | |
|                      KP = IMAX
 | |
|                      KSTEP = 2
 | |
|                      DONE = .TRUE.
 | |
|                   ELSE
 | |
| *
 | |
| *                    Pivot NOT found, set variables and repeat
 | |
| *
 | |
|                      P = IMAX
 | |
|                      COLMAX = ROWMAX
 | |
|                      IMAX = JMAX
 | |
|                   END IF
 | |
| *
 | |
| *                 End pivot search loop body
 | |
| *
 | |
|                IF( .NOT. DONE ) GOTO 42
 | |
| *
 | |
|             END IF
 | |
| *
 | |
| *           Swap TWO rows and TWO columns
 | |
| *
 | |
| *           First swap
 | |
| *
 | |
|             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
 | |
| *
 | |
| *              Interchange rows and column K and P in the trailing
 | |
| *              submatrix A(k:n,k:n) if we have a 2-by-2 pivot
 | |
| *
 | |
|                IF( P.LT.N )
 | |
|      $            CALL ZSWAP( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
 | |
|                IF( P.GT.(K+1) )
 | |
|      $            CALL ZSWAP( P-K-1, A( K+1, K ), 1, A( P, K+1 ), LDA )
 | |
|                T = A( K, K )
 | |
|                A( K, K ) = A( P, P )
 | |
|                A( P, P ) = T
 | |
| *
 | |
| *              Convert lower triangle of A into L form by applying
 | |
| *              the interchanges in columns 1:k-1.
 | |
| *
 | |
|                IF ( K.GT.1 )
 | |
|      $            CALL ZSWAP( K-1, A( K, 1 ), LDA, A( P, 1 ), LDA )
 | |
| *
 | |
|             END IF
 | |
| *
 | |
| *           Second swap
 | |
| *
 | |
|             KK = K + KSTEP - 1
 | |
|             IF( KP.NE.KK ) THEN
 | |
| *
 | |
| *              Interchange rows and columns KK and KP in the trailing
 | |
| *              submatrix A(k:n,k:n)
 | |
| *
 | |
|                IF( KP.LT.N )
 | |
|      $            CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
 | |
|                IF( ( KK.LT.N ) .AND. ( KP.GT.(KK+1) ) )
 | |
|      $            CALL ZSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
 | |
|      $                     LDA )
 | |
|                T = A( KK, KK )
 | |
|                A( KK, KK ) = A( KP, KP )
 | |
|                A( KP, KP ) = T
 | |
|                IF( KSTEP.EQ.2 ) THEN
 | |
|                   T = A( K+1, K )
 | |
|                   A( K+1, K ) = A( KP, K )
 | |
|                   A( KP, K ) = T
 | |
|                END IF
 | |
| *
 | |
| *              Convert lower triangle of A into L form by applying
 | |
| *              the interchanges in columns 1:k-1.
 | |
| *
 | |
|                IF ( K.GT.1 )
 | |
|      $            CALL ZSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
 | |
| *
 | |
|             END IF
 | |
| *
 | |
| *           Update the trailing submatrix
 | |
| *
 | |
|             IF( KSTEP.EQ.1 ) THEN
 | |
| *
 | |
| *              1-by-1 pivot block D(k): column k now holds
 | |
| *
 | |
| *              W(k) = L(k)*D(k)
 | |
| *
 | |
| *              where L(k) is the k-th column of L
 | |
| *
 | |
|                IF( K.LT.N ) THEN
 | |
| *
 | |
| *              Perform a rank-1 update of A(k+1:n,k+1:n) and
 | |
| *              store L(k) in column k
 | |
| *
 | |
|                   IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
 | |
| *
 | |
| *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
 | |
| *                    A := A - L(k)*D(k)*L(k)**T
 | |
| *                       = A - W(k)*(1/D(k))*W(k)**T
 | |
| *
 | |
|                      D11 = CONE / A( K, K )
 | |
|                      CALL ZSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
 | |
|      $                          A( K+1, K+1 ), LDA )
 | |
| *
 | |
| *                    Store L(k) in column k
 | |
| *
 | |
|                      CALL ZSCAL( N-K, D11, A( K+1, K ), 1 )
 | |
|                   ELSE
 | |
| *
 | |
| *                    Store L(k) in column k
 | |
| *
 | |
|                      D11 = A( K, K )
 | |
|                      DO 46 II = K + 1, N
 | |
|                         A( II, K ) = A( II, K ) / D11
 | |
|    46                CONTINUE
 | |
| *
 | |
| *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
 | |
| *                    A := A - L(k)*D(k)*L(k)**T
 | |
| *                       = A - W(k)*(1/D(k))*W(k)**T
 | |
| *                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
 | |
| *
 | |
|                      CALL ZSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
 | |
|      $                          A( K+1, K+1 ), LDA )
 | |
|                   END IF
 | |
| *
 | |
| *                 Store the subdiagonal element of D in array E
 | |
| *
 | |
|                   E( K ) = CZERO
 | |
| *
 | |
|                END IF
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              2-by-2 pivot block D(k): columns k and k+1 now hold
 | |
| *
 | |
| *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
 | |
| *
 | |
| *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
 | |
| *              of L
 | |
| *
 | |
| *
 | |
| *              Perform a rank-2 update of A(k+2:n,k+2:n) as
 | |
| *
 | |
| *              A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T
 | |
| *                 = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T
 | |
| *
 | |
| *              and store L(k) and L(k+1) in columns k and k+1
 | |
| *
 | |
|                IF( K.LT.N-1 ) THEN
 | |
| *
 | |
|                   D21 = A( K+1, K )
 | |
|                   D11 = A( K+1, K+1 ) / D21
 | |
|                   D22 = A( K, K ) / D21
 | |
|                   T = CONE / ( D11*D22-CONE )
 | |
| *
 | |
|                   DO 60 J = K + 2, N
 | |
| *
 | |
| *                    Compute  D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J
 | |
| *
 | |
|                      WK = T*( D11*A( J, K )-A( J, K+1 ) )
 | |
|                      WKP1 = T*( D22*A( J, K+1 )-A( J, K ) )
 | |
| *
 | |
| *                    Perform a rank-2 update of A(k+2:n,k+2:n)
 | |
| *
 | |
|                      DO 50 I = J, N
 | |
|                         A( I, J ) = A( I, J ) - ( A( I, K ) / D21 )*WK -
 | |
|      $                              ( A( I, K+1 ) / D21 )*WKP1
 | |
|    50                CONTINUE
 | |
| *
 | |
| *                    Store L(k) and L(k+1) in cols k and k+1 for row J
 | |
| *
 | |
|                      A( J, K ) = WK / D21
 | |
|                      A( J, K+1 ) = WKP1 / D21
 | |
| *
 | |
|    60             CONTINUE
 | |
| *
 | |
|                END IF
 | |
| *
 | |
| *              Copy subdiagonal elements of D(K) to E(K) and
 | |
| *              ZERO out subdiagonal entry of A
 | |
| *
 | |
|                E( K ) = A( K+1, K )
 | |
|                E( K+1 ) = CZERO
 | |
|                A( K+1, K ) = CZERO
 | |
| *
 | |
|             END IF
 | |
| *
 | |
| *           End column K is nonsingular
 | |
| *
 | |
|          END IF
 | |
| *
 | |
| *        Store details of the interchanges in IPIV
 | |
| *
 | |
|          IF( KSTEP.EQ.1 ) THEN
 | |
|             IPIV( K ) = KP
 | |
|          ELSE
 | |
|             IPIV( K ) = -P
 | |
|             IPIV( K+1 ) = -KP
 | |
|          END IF
 | |
| *
 | |
| *        Increase K and return to the start of the main loop
 | |
| *
 | |
|          K = K + KSTEP
 | |
|          GO TO 40
 | |
| *
 | |
|    64    CONTINUE
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZSYTF2_RK
 | |
| *
 | |
|       END
 |