246 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			246 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZPTTS2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zptts2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zptts2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zptts2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZPTTS2( IUPLO, N, NRHS, D, E, B, LDB )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            IUPLO, LDB, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   D( * )
 | |
| *       COMPLEX*16         B( LDB, * ), E( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZPTTS2 solves a tridiagonal system of the form
 | |
| *>    A * X = B
 | |
| *> using the factorization A = U**H *D*U or A = L*D*L**H computed by ZPTTRF.
 | |
| *> D is a diagonal matrix specified in the vector D, U (or L) is a unit
 | |
| *> bidiagonal matrix whose superdiagonal (subdiagonal) is specified in
 | |
| *> the vector E, and X and B are N by NRHS matrices.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] IUPLO
 | |
| *> \verbatim
 | |
| *>          IUPLO is INTEGER
 | |
| *>          Specifies the form of the factorization and whether the
 | |
| *>          vector E is the superdiagonal of the upper bidiagonal factor
 | |
| *>          U or the subdiagonal of the lower bidiagonal factor L.
 | |
| *>          = 1:  A = U**H *D*U, E is the superdiagonal of U
 | |
| *>          = 0:  A = L*D*L**H, E is the subdiagonal of L
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the tridiagonal matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrix B.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The n diagonal elements of the diagonal matrix D from the
 | |
| *>          factorization A = U**H *D*U or A = L*D*L**H.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is COMPLEX*16 array, dimension (N-1)
 | |
| *>          If IUPLO = 1, the (n-1) superdiagonal elements of the unit
 | |
| *>          bidiagonal factor U from the factorization A = U**H*D*U.
 | |
| *>          If IUPLO = 0, the (n-1) subdiagonal elements of the unit
 | |
| *>          bidiagonal factor L from the factorization A = L*D*L**H.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
 | |
| *>          On entry, the right hand side vectors B for the system of
 | |
| *>          linear equations.
 | |
| *>          On exit, the solution vectors, X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date June 2016
 | |
| *
 | |
| *> \ingroup complex16PTcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZPTTS2( IUPLO, N, NRHS, D, E, B, LDB )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     June 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            IUPLO, LDB, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   D( * )
 | |
|       COMPLEX*16         B( LDB, * ), E( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZDSCAL
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DCONJG
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LE.1 ) THEN
 | |
|          IF( N.EQ.1 )
 | |
|      $      CALL ZDSCAL( NRHS, 1.D0 / D( 1 ), B, LDB )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( IUPLO.EQ.1 ) THEN
 | |
| *
 | |
| *        Solve A * X = B using the factorization A = U**H *D*U,
 | |
| *        overwriting each right hand side vector with its solution.
 | |
| *
 | |
|          IF( NRHS.LE.2 ) THEN
 | |
|             J = 1
 | |
|    10       CONTINUE
 | |
| *
 | |
| *           Solve U**H * x = b.
 | |
| *
 | |
|             DO 20 I = 2, N
 | |
|                B( I, J ) = B( I, J ) - B( I-1, J )*DCONJG( E( I-1 ) )
 | |
|    20       CONTINUE
 | |
| *
 | |
| *           Solve D * U * x = b.
 | |
| *
 | |
|             DO 30 I = 1, N
 | |
|                B( I, J ) = B( I, J ) / D( I )
 | |
|    30       CONTINUE
 | |
|             DO 40 I = N - 1, 1, -1
 | |
|                B( I, J ) = B( I, J ) - B( I+1, J )*E( I )
 | |
|    40       CONTINUE
 | |
|             IF( J.LT.NRHS ) THEN
 | |
|                J = J + 1
 | |
|                GO TO 10
 | |
|             END IF
 | |
|          ELSE
 | |
|             DO 70 J = 1, NRHS
 | |
| *
 | |
| *              Solve U**H * x = b.
 | |
| *
 | |
|                DO 50 I = 2, N
 | |
|                   B( I, J ) = B( I, J ) - B( I-1, J )*DCONJG( E( I-1 ) )
 | |
|    50          CONTINUE
 | |
| *
 | |
| *              Solve D * U * x = b.
 | |
| *
 | |
|                B( N, J ) = B( N, J ) / D( N )
 | |
|                DO 60 I = N - 1, 1, -1
 | |
|                   B( I, J ) = B( I, J ) / D( I ) - B( I+1, J )*E( I )
 | |
|    60          CONTINUE
 | |
|    70       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Solve A * X = B using the factorization A = L*D*L**H,
 | |
| *        overwriting each right hand side vector with its solution.
 | |
| *
 | |
|          IF( NRHS.LE.2 ) THEN
 | |
|             J = 1
 | |
|    80       CONTINUE
 | |
| *
 | |
| *           Solve L * x = b.
 | |
| *
 | |
|             DO 90 I = 2, N
 | |
|                B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
 | |
|    90       CONTINUE
 | |
| *
 | |
| *           Solve D * L**H * x = b.
 | |
| *
 | |
|             DO 100 I = 1, N
 | |
|                B( I, J ) = B( I, J ) / D( I )
 | |
|   100       CONTINUE
 | |
|             DO 110 I = N - 1, 1, -1
 | |
|                B( I, J ) = B( I, J ) - B( I+1, J )*DCONJG( E( I ) )
 | |
|   110       CONTINUE
 | |
|             IF( J.LT.NRHS ) THEN
 | |
|                J = J + 1
 | |
|                GO TO 80
 | |
|             END IF
 | |
|          ELSE
 | |
|             DO 140 J = 1, NRHS
 | |
| *
 | |
| *              Solve L * x = b.
 | |
| *
 | |
|                DO 120 I = 2, N
 | |
|                   B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
 | |
|   120          CONTINUE
 | |
| *
 | |
| *              Solve D * L**H * x = b.
 | |
| *
 | |
|                B( N, J ) = B( N, J ) / D( N )
 | |
|                DO 130 I = N - 1, 1, -1
 | |
|                   B( I, J ) = B( I, J ) / D( I ) -
 | |
|      $                        B( I+1, J )*DCONJG( E( I ) )
 | |
|   130          CONTINUE
 | |
|   140       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZPTTS2
 | |
| *
 | |
|       END
 |