207 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			207 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZLATRZ factors an upper trapezoidal matrix by means of unitary transformations.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZLATRZ + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatrz.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatrz.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatrz.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZLATRZ( M, N, L, A, LDA, TAU, WORK )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            L, LDA, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix
 | |
| *> [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R  0 ) * Z by means
 | |
| *> of unitary transformations, where  Z is an (M+L)-by-(M+L) unitary
 | |
| *> matrix and, R and A1 are M-by-M upper triangular matrices.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] L
 | |
| *> \verbatim
 | |
| *>          L is INTEGER
 | |
| *>          The number of columns of the matrix A containing the
 | |
| *>          meaningful part of the Householder vectors. N-M >= L >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          On entry, the leading M-by-N upper trapezoidal part of the
 | |
| *>          array A must contain the matrix to be factorized.
 | |
| *>          On exit, the leading M-by-M upper triangular part of A
 | |
| *>          contains the upper triangular matrix R, and elements N-L+1 to
 | |
| *>          N of the first M rows of A, with the array TAU, represent the
 | |
| *>          unitary matrix Z as a product of M elementary reflectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is COMPLEX*16 array, dimension (M)
 | |
| *>          The scalar factors of the elementary reflectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (M)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complex16OTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The factorization is obtained by Householder's method.  The kth
 | |
| *>  transformation matrix, Z( k ), which is used to introduce zeros into
 | |
| *>  the ( m - k + 1 )th row of A, is given in the form
 | |
| *>
 | |
| *>     Z( k ) = ( I     0   ),
 | |
| *>              ( 0  T( k ) )
 | |
| *>
 | |
| *>  where
 | |
| *>
 | |
| *>     T( k ) = I - tau*u( k )*u( k )**H,   u( k ) = (   1    ),
 | |
| *>                                                 (   0    )
 | |
| *>                                                 ( z( k ) )
 | |
| *>
 | |
| *>  tau is a scalar and z( k ) is an l element vector. tau and z( k )
 | |
| *>  are chosen to annihilate the elements of the kth row of A2.
 | |
| *>
 | |
| *>  The scalar tau is returned in the kth element of TAU and the vector
 | |
| *>  u( k ) in the kth row of A2, such that the elements of z( k ) are
 | |
| *>  in  a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
 | |
| *>  the upper triangular part of A1.
 | |
| *>
 | |
| *>  Z is given by
 | |
| *>
 | |
| *>     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZLATRZ( M, N, L, A, LDA, TAU, WORK )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            L, LDA, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16         ZERO
 | |
|       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I
 | |
|       COMPLEX*16         ALPHA
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZLACGV, ZLARFG, ZLARZ
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DCONJG
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.EQ.0 ) THEN
 | |
|          RETURN
 | |
|       ELSE IF( M.EQ.N ) THEN
 | |
|          DO 10 I = 1, N
 | |
|             TAU( I ) = ZERO
 | |
|    10    CONTINUE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       DO 20 I = M, 1, -1
 | |
| *
 | |
| *        Generate elementary reflector H(i) to annihilate
 | |
| *        [ A(i,i) A(i,n-l+1:n) ]
 | |
| *
 | |
|          CALL ZLACGV( L, A( I, N-L+1 ), LDA )
 | |
|          ALPHA = DCONJG( A( I, I ) )
 | |
|          CALL ZLARFG( L+1, ALPHA, A( I, N-L+1 ), LDA, TAU( I ) )
 | |
|          TAU( I ) = DCONJG( TAU( I ) )
 | |
| *
 | |
| *        Apply H(i) to A(1:i-1,i:n) from the right
 | |
| *
 | |
|          CALL ZLARZ( 'Right', I-1, N-I+1, L, A( I, N-L+1 ), LDA,
 | |
|      $               DCONJG( TAU( I ) ), A( 1, I ), LDA, WORK )
 | |
|          A( I, I ) = DCONJG( ALPHA )
 | |
| *
 | |
|    20 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZLATRZ
 | |
| *
 | |
|       END
 |