251 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			251 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZLARTG generates a plane rotation with real cosine and complex sine.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZLARTG + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlartg.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlartg.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlartg.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZLARTG( F, G, CS, SN, R )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       DOUBLE PRECISION   CS
 | |
| *       COMPLEX*16         F, G, R, SN
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZLARTG generates a plane rotation so that
 | |
| *>
 | |
| *>    [  CS  SN  ]     [ F ]     [ R ]
 | |
| *>    [  __      ]  .  [   ]  =  [   ]   where CS**2 + |SN|**2 = 1.
 | |
| *>    [ -SN  CS  ]     [ G ]     [ 0 ]
 | |
| *>
 | |
| *> This is a faster version of the BLAS1 routine ZROTG, except for
 | |
| *> the following differences:
 | |
| *>    F and G are unchanged on return.
 | |
| *>    If G=0, then CS=1 and SN=0.
 | |
| *>    If F=0, then CS=0 and SN is chosen so that R is real.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] F
 | |
| *> \verbatim
 | |
| *>          F is COMPLEX*16
 | |
| *>          The first component of vector to be rotated.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] G
 | |
| *> \verbatim
 | |
| *>          G is COMPLEX*16
 | |
| *>          The second component of vector to be rotated.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] CS
 | |
| *> \verbatim
 | |
| *>          CS is DOUBLE PRECISION
 | |
| *>          The cosine of the rotation.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SN
 | |
| *> \verbatim
 | |
| *>          SN is COMPLEX*16
 | |
| *>          The sine of the rotation.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] R
 | |
| *> \verbatim
 | |
| *>          R is COMPLEX*16
 | |
| *>          The nonzero component of the rotated vector.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complex16OTHERauxiliary
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  3-5-96 - Modified with a new algorithm by W. Kahan and J. Demmel
 | |
| *>
 | |
| *>  This version has a few statements commented out for thread safety
 | |
| *>  (machine parameters are computed on each entry). 10 feb 03, SJH.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZLARTG( F, G, CS, SN, R )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       DOUBLE PRECISION   CS
 | |
|       COMPLEX*16         F, G, R, SN
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   TWO, ONE, ZERO
 | |
|       PARAMETER          ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
|       COMPLEX*16         CZERO
 | |
|       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
| *     LOGICAL            FIRST
 | |
|       INTEGER            COUNT, I
 | |
|       DOUBLE PRECISION   D, DI, DR, EPS, F2, F2S, G2, G2S, SAFMIN,
 | |
|      $                   SAFMN2, SAFMX2, SCALE
 | |
|       COMPLEX*16         FF, FS, GS
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH, DLAPY2
 | |
|       LOGICAL            DISNAN
 | |
|       EXTERNAL           DLAMCH, DLAPY2, DISNAN
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, LOG,
 | |
|      $                   MAX, SQRT
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       DOUBLE PRECISION   ABS1, ABSSQ
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       ABS1( FF ) = MAX( ABS( DBLE( FF ) ), ABS( DIMAG( FF ) ) )
 | |
|       ABSSQ( FF ) = DBLE( FF )**2 + DIMAG( FF )**2
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       SAFMIN = DLAMCH( 'S' )
 | |
|       EPS = DLAMCH( 'E' )
 | |
|       SAFMN2 = DLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /
 | |
|      $         LOG( DLAMCH( 'B' ) ) / TWO )
 | |
|       SAFMX2 = ONE / SAFMN2
 | |
|       SCALE = MAX( ABS1( F ), ABS1( G ) )
 | |
|       FS = F
 | |
|       GS = G
 | |
|       COUNT = 0
 | |
|       IF( SCALE.GE.SAFMX2 ) THEN
 | |
|    10    CONTINUE
 | |
|          COUNT = COUNT + 1
 | |
|          FS = FS*SAFMN2
 | |
|          GS = GS*SAFMN2
 | |
|          SCALE = SCALE*SAFMN2
 | |
|          IF( SCALE.GE.SAFMX2 .AND. COUNT .LT. 20 )
 | |
|      $      GO TO 10
 | |
|       ELSE IF( SCALE.LE.SAFMN2 ) THEN
 | |
|          IF( G.EQ.CZERO.OR.DISNAN( ABS( G ) ) ) THEN
 | |
|             CS = ONE
 | |
|             SN = CZERO
 | |
|             R = F
 | |
|             RETURN
 | |
|          END IF
 | |
|    20    CONTINUE
 | |
|          COUNT = COUNT - 1
 | |
|          FS = FS*SAFMX2
 | |
|          GS = GS*SAFMX2
 | |
|          SCALE = SCALE*SAFMX2
 | |
|          IF( SCALE.LE.SAFMN2 )
 | |
|      $      GO TO 20
 | |
|       END IF
 | |
|       F2 = ABSSQ( FS )
 | |
|       G2 = ABSSQ( GS )
 | |
|       IF( F2.LE.MAX( G2, ONE )*SAFMIN ) THEN
 | |
| *
 | |
| *        This is a rare case: F is very small.
 | |
| *
 | |
|          IF( F.EQ.CZERO ) THEN
 | |
|             CS = ZERO
 | |
|             R = DLAPY2( DBLE( G ), DIMAG( G ) )
 | |
| *           Do complex/real division explicitly with two real divisions
 | |
|             D = DLAPY2( DBLE( GS ), DIMAG( GS ) )
 | |
|             SN = DCMPLX( DBLE( GS ) / D, -DIMAG( GS ) / D )
 | |
|             RETURN
 | |
|          END IF
 | |
|          F2S = DLAPY2( DBLE( FS ), DIMAG( FS ) )
 | |
| *        G2 and G2S are accurate
 | |
| *        G2 is at least SAFMIN, and G2S is at least SAFMN2
 | |
|          G2S = SQRT( G2 )
 | |
| *        Error in CS from underflow in F2S is at most
 | |
| *        UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS
 | |
| *        If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN,
 | |
| *        and so CS .lt. sqrt(SAFMIN)
 | |
| *        If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN
 | |
| *        and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS)
 | |
| *        Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S
 | |
|          CS = F2S / G2S
 | |
| *        Make sure abs(FF) = 1
 | |
| *        Do complex/real division explicitly with 2 real divisions
 | |
|          IF( ABS1( F ).GT.ONE ) THEN
 | |
|             D = DLAPY2( DBLE( F ), DIMAG( F ) )
 | |
|             FF = DCMPLX( DBLE( F ) / D, DIMAG( F ) / D )
 | |
|          ELSE
 | |
|             DR = SAFMX2*DBLE( F )
 | |
|             DI = SAFMX2*DIMAG( F )
 | |
|             D = DLAPY2( DR, DI )
 | |
|             FF = DCMPLX( DR / D, DI / D )
 | |
|          END IF
 | |
|          SN = FF*DCMPLX( DBLE( GS ) / G2S, -DIMAG( GS ) / G2S )
 | |
|          R = CS*F + SN*G
 | |
|       ELSE
 | |
| *
 | |
| *        This is the most common case.
 | |
| *        Neither F2 nor F2/G2 are less than SAFMIN
 | |
| *        F2S cannot overflow, and it is accurate
 | |
| *
 | |
|          F2S = SQRT( ONE+G2 / F2 )
 | |
| *        Do the F2S(real)*FS(complex) multiply with two real multiplies
 | |
|          R = DCMPLX( F2S*DBLE( FS ), F2S*DIMAG( FS ) )
 | |
|          CS = ONE / F2S
 | |
|          D = F2 + G2
 | |
| *        Do complex/real division explicitly with two real divisions
 | |
|          SN = DCMPLX( DBLE( R ) / D, DIMAG( R ) / D )
 | |
|          SN = SN*DCONJG( GS )
 | |
|          IF( COUNT.NE.0 ) THEN
 | |
|             IF( COUNT.GT.0 ) THEN
 | |
|                DO 30 I = 1, COUNT
 | |
|                   R = R*SAFMX2
 | |
|    30          CONTINUE
 | |
|             ELSE
 | |
|                DO 40 I = 1, -COUNT
 | |
|                   R = R*SAFMN2
 | |
|    40          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZLARTG
 | |
| *
 | |
|       END
 |