273 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			273 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZLARFGP + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarfgp.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarfgp.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarfgp.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZLARFGP( N, ALPHA, X, INCX, TAU )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INCX, N
 | |
| *       COMPLEX*16         ALPHA, TAU
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX*16         X( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZLARFGP generates a complex elementary reflector H of order n, such
 | |
| *> that
 | |
| *>
 | |
| *>       H**H * ( alpha ) = ( beta ),   H**H * H = I.
 | |
| *>              (   x   )   (   0  )
 | |
| *>
 | |
| *> where alpha and beta are scalars, beta is real and non-negative, and
 | |
| *> x is an (n-1)-element complex vector.  H is represented in the form
 | |
| *>
 | |
| *>       H = I - tau * ( 1 ) * ( 1 v**H ) ,
 | |
| *>                     ( v )
 | |
| *>
 | |
| *> where tau is a complex scalar and v is a complex (n-1)-element
 | |
| *> vector. Note that H is not hermitian.
 | |
| *>
 | |
| *> If the elements of x are all zero and alpha is real, then tau = 0
 | |
| *> and H is taken to be the unit matrix.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the elementary reflector.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is COMPLEX*16
 | |
| *>          On entry, the value alpha.
 | |
| *>          On exit, it is overwritten with the value beta.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX*16 array, dimension
 | |
| *>                         (1+(N-2)*abs(INCX))
 | |
| *>          On entry, the vector x.
 | |
| *>          On exit, it is overwritten with the vector v.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCX
 | |
| *> \verbatim
 | |
| *>          INCX is INTEGER
 | |
| *>          The increment between elements of X. INCX > 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is COMPLEX*16
 | |
| *>          The value tau.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date November 2017
 | |
| *
 | |
| *> \ingroup complex16OTHERauxiliary
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZLARFGP( N, ALPHA, X, INCX, TAU )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.8.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2017
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INCX, N
 | |
|       COMPLEX*16         ALPHA, TAU
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16         X( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   TWO, ONE, ZERO
 | |
|       PARAMETER          ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            J, KNT
 | |
|       DOUBLE PRECISION   ALPHI, ALPHR, BETA, BIGNUM, SMLNUM, XNORM
 | |
|       COMPLEX*16         SAVEALPHA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH, DLAPY3, DLAPY2, DZNRM2
 | |
|       COMPLEX*16         ZLADIV
 | |
|       EXTERNAL           DLAMCH, DLAPY3, DLAPY2, DZNRM2, ZLADIV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, SIGN
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZDSCAL, ZSCAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          TAU = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       XNORM = DZNRM2( N-1, X, INCX )
 | |
|       ALPHR = DBLE( ALPHA )
 | |
|       ALPHI = DIMAG( ALPHA )
 | |
| *
 | |
|       IF( XNORM.EQ.ZERO ) THEN
 | |
| *
 | |
| *        H  =  [1-alpha/abs(alpha) 0; 0 I], sign chosen so ALPHA >= 0.
 | |
| *
 | |
|          IF( ALPHI.EQ.ZERO ) THEN
 | |
|             IF( ALPHR.GE.ZERO ) THEN
 | |
| *              When TAU.eq.ZERO, the vector is special-cased to be
 | |
| *              all zeros in the application routines.  We do not need
 | |
| *              to clear it.
 | |
|                TAU = ZERO
 | |
|             ELSE
 | |
| *              However, the application routines rely on explicit
 | |
| *              zero checks when TAU.ne.ZERO, and we must clear X.
 | |
|                TAU = TWO
 | |
|                DO J = 1, N-1
 | |
|                   X( 1 + (J-1)*INCX ) = ZERO
 | |
|                END DO
 | |
|                ALPHA = -ALPHA
 | |
|             END IF
 | |
|          ELSE
 | |
| *           Only "reflecting" the diagonal entry to be real and non-negative.
 | |
|             XNORM = DLAPY2( ALPHR, ALPHI )
 | |
|             TAU = DCMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
 | |
|             DO J = 1, N-1
 | |
|                X( 1 + (J-1)*INCX ) = ZERO
 | |
|             END DO
 | |
|             ALPHA = XNORM
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        general case
 | |
| *
 | |
|          BETA = SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
 | |
|          SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'E' )
 | |
|          BIGNUM = ONE / SMLNUM
 | |
| *
 | |
|          KNT = 0
 | |
|          IF( ABS( BETA ).LT.SMLNUM ) THEN
 | |
| *
 | |
| *           XNORM, BETA may be inaccurate; scale X and recompute them
 | |
| *
 | |
|    10       CONTINUE
 | |
|             KNT = KNT + 1
 | |
|             CALL ZDSCAL( N-1, BIGNUM, X, INCX )
 | |
|             BETA = BETA*BIGNUM
 | |
|             ALPHI = ALPHI*BIGNUM
 | |
|             ALPHR = ALPHR*BIGNUM
 | |
|             IF( (ABS( BETA ).LT.SMLNUM) .AND. (KNT .LT. 20) )
 | |
|      $         GO TO 10
 | |
| *
 | |
| *           New BETA is at most 1, at least SMLNUM
 | |
| *
 | |
|             XNORM = DZNRM2( N-1, X, INCX )
 | |
|             ALPHA = DCMPLX( ALPHR, ALPHI )
 | |
|             BETA = SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
 | |
|          END IF
 | |
|          SAVEALPHA = ALPHA
 | |
|          ALPHA = ALPHA + BETA
 | |
|          IF( BETA.LT.ZERO ) THEN
 | |
|             BETA = -BETA
 | |
|             TAU = -ALPHA / BETA
 | |
|          ELSE
 | |
|             ALPHR = ALPHI * (ALPHI/DBLE( ALPHA ))
 | |
|             ALPHR = ALPHR + XNORM * (XNORM/DBLE( ALPHA ))
 | |
|             TAU = DCMPLX( ALPHR/BETA, -ALPHI/BETA )
 | |
|             ALPHA = DCMPLX( -ALPHR, ALPHI )
 | |
|          END IF
 | |
|          ALPHA = ZLADIV( DCMPLX( ONE ), ALPHA )
 | |
| *
 | |
|          IF ( ABS(TAU).LE.SMLNUM ) THEN
 | |
| *
 | |
| *           In the case where the computed TAU ends up being a denormalized number,
 | |
| *           it loses relative accuracy. This is a BIG problem. Solution: flush TAU
 | |
| *           to ZERO (or TWO or whatever makes a nonnegative real number for BETA).
 | |
| *
 | |
| *           (Bug report provided by Pat Quillen from MathWorks on Jul 29, 2009.)
 | |
| *           (Thanks Pat. Thanks MathWorks.)
 | |
| *
 | |
|             ALPHR = DBLE( SAVEALPHA )
 | |
|             ALPHI = DIMAG( SAVEALPHA )
 | |
|             IF( ALPHI.EQ.ZERO ) THEN
 | |
|                IF( ALPHR.GE.ZERO ) THEN
 | |
|                   TAU = ZERO
 | |
|                ELSE
 | |
|                   TAU = TWO
 | |
|                   DO J = 1, N-1
 | |
|                      X( 1 + (J-1)*INCX ) = ZERO
 | |
|                   END DO
 | |
|                   BETA = -SAVEALPHA
 | |
|                END IF
 | |
|             ELSE
 | |
|                XNORM = DLAPY2( ALPHR, ALPHI )
 | |
|                TAU = DCMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
 | |
|                DO J = 1, N-1
 | |
|                   X( 1 + (J-1)*INCX ) = ZERO
 | |
|                END DO
 | |
|                BETA = XNORM
 | |
|             END IF
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           This is the general case.
 | |
| *
 | |
|             CALL ZSCAL( N-1, ALPHA, X, INCX )
 | |
| *
 | |
|          END IF
 | |
| *
 | |
| *        If BETA is subnormal, it may lose relative accuracy
 | |
| *
 | |
|          DO 20 J = 1, KNT
 | |
|             BETA = BETA*SMLNUM
 | |
|  20      CONTINUE
 | |
|          ALPHA = BETA
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZLARFGP
 | |
| *
 | |
|       END
 |