219 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			219 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZLANHS + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhs.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhs.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhs.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       DOUBLE PRECISION FUNCTION ZLANHS( NORM, N, A, LDA, WORK )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          NORM
 | |
| *       INTEGER            LDA, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   WORK( * )
 | |
| *       COMPLEX*16         A( LDA, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZLANHS  returns the value of the one norm,  or the Frobenius norm, or
 | |
| *> the  infinity norm,  or the  element of  largest absolute value  of a
 | |
| *> Hessenberg matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \return ZLANHS
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    ZLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 | |
| *>             (
 | |
| *>             ( norm1(A),         NORM = '1', 'O' or 'o'
 | |
| *>             (
 | |
| *>             ( normI(A),         NORM = 'I' or 'i'
 | |
| *>             (
 | |
| *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 | |
| *>
 | |
| *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
 | |
| *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 | |
| *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
 | |
| *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NORM
 | |
| *> \verbatim
 | |
| *>          NORM is CHARACTER*1
 | |
| *>          Specifies the value to be returned in ZLANHS as described
 | |
| *>          above.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.  When N = 0, ZLANHS is
 | |
| *>          set to zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          The n by n upper Hessenberg matrix A; the part of A below the
 | |
| *>          first sub-diagonal is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(N,1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 | |
| *>          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
 | |
| *>          referenced.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complex16OTHERauxiliary
 | |
| *
 | |
| *  =====================================================================
 | |
|       DOUBLE PRECISION FUNCTION ZLANHS( NORM, N, A, LDA, WORK )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
|       IMPLICIT NONE
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          NORM
 | |
|       INTEGER            LDA, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   WORK( * )
 | |
|       COMPLEX*16         A( LDA, * )
 | |
| *     ..
 | |
| *
 | |
| * =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J
 | |
|       DOUBLE PRECISION   SUM, VALUE
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       DOUBLE PRECISION   SSQ( 2 ), COLSSQ( 2 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME, DISNAN
 | |
|       EXTERNAL           LSAME, DISNAN
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZLASSQ, DCOMBSSQ
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          VALUE = ZERO
 | |
|       ELSE IF( LSAME( NORM, 'M' ) ) THEN
 | |
| *
 | |
| *        Find max(abs(A(i,j))).
 | |
| *
 | |
|          VALUE = ZERO
 | |
|          DO 20 J = 1, N
 | |
|             DO 10 I = 1, MIN( N, J+1 )
 | |
|                SUM = ABS( A( I, J ) )
 | |
|                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | |
|    10       CONTINUE
 | |
|    20    CONTINUE
 | |
|       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
 | |
| *
 | |
| *        Find norm1(A).
 | |
| *
 | |
|          VALUE = ZERO
 | |
|          DO 40 J = 1, N
 | |
|             SUM = ZERO
 | |
|             DO 30 I = 1, MIN( N, J+1 )
 | |
|                SUM = SUM + ABS( A( I, J ) )
 | |
|    30       CONTINUE
 | |
|             IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | |
|    40    CONTINUE
 | |
|       ELSE IF( LSAME( NORM, 'I' ) ) THEN
 | |
| *
 | |
| *        Find normI(A).
 | |
| *
 | |
|          DO 50 I = 1, N
 | |
|             WORK( I ) = ZERO
 | |
|    50    CONTINUE
 | |
|          DO 70 J = 1, N
 | |
|             DO 60 I = 1, MIN( N, J+1 )
 | |
|                WORK( I ) = WORK( I ) + ABS( A( I, J ) )
 | |
|    60       CONTINUE
 | |
|    70    CONTINUE
 | |
|          VALUE = ZERO
 | |
|          DO 80 I = 1, N
 | |
|             SUM = WORK( I )
 | |
|             IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | |
|    80    CONTINUE
 | |
|       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
 | |
| *
 | |
| *        Find normF(A).
 | |
| *        SSQ(1) is scale
 | |
| *        SSQ(2) is sum-of-squares
 | |
| *        For better accuracy, sum each column separately.
 | |
| *
 | |
|          SSQ( 1 ) = ZERO
 | |
|          SSQ( 2 ) = ONE
 | |
|          DO 90 J = 1, N
 | |
|             COLSSQ( 1 ) = ZERO
 | |
|             COLSSQ( 2 ) = ONE
 | |
|             CALL ZLASSQ( MIN( N, J+1 ), A( 1, J ), 1,
 | |
|      $                   COLSSQ( 1 ), COLSSQ( 2 ) )
 | |
|             CALL DCOMBSSQ( SSQ, COLSSQ )
 | |
|    90    CONTINUE
 | |
|          VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
 | |
|       END IF
 | |
| *
 | |
|       ZLANHS = VALUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZLANHS
 | |
| *
 | |
|       END
 |