288 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			288 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZHBGV
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZHBGV + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbgv.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbgv.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbgv.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZHBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
 | |
| *                         LDZ, WORK, RWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBZ, UPLO
 | |
| *       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   RWORK( * ), W( * )
 | |
| *       COMPLEX*16         AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
 | |
| *      $                   Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZHBGV computes all the eigenvalues, and optionally, the eigenvectors
 | |
| *> of a complex generalized Hermitian-definite banded eigenproblem, of
 | |
| *> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
 | |
| *> and banded, and B is also positive definite.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBZ
 | |
| *> \verbatim
 | |
| *>          JOBZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only;
 | |
| *>          = 'V':  Compute eigenvalues and eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangles of A and B are stored;
 | |
| *>          = 'L':  Lower triangles of A and B are stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A and B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KA
 | |
| *> \verbatim
 | |
| *>          KA is INTEGER
 | |
| *>          The number of superdiagonals of the matrix A if UPLO = 'U',
 | |
| *>          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KB
 | |
| *> \verbatim
 | |
| *>          KB is INTEGER
 | |
| *>          The number of superdiagonals of the matrix B if UPLO = 'U',
 | |
| *>          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AB
 | |
| *> \verbatim
 | |
| *>          AB is COMPLEX*16 array, dimension (LDAB, N)
 | |
| *>          On entry, the upper or lower triangle of the Hermitian band
 | |
| *>          matrix A, stored in the first ka+1 rows of the array.  The
 | |
| *>          j-th column of A is stored in the j-th column of the array AB
 | |
| *>          as follows:
 | |
| *>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
 | |
| *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
 | |
| *>
 | |
| *>          On exit, the contents of AB are destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>          The leading dimension of the array AB.  LDAB >= KA+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] BB
 | |
| *> \verbatim
 | |
| *>          BB is COMPLEX*16 array, dimension (LDBB, N)
 | |
| *>          On entry, the upper or lower triangle of the Hermitian band
 | |
| *>          matrix B, stored in the first kb+1 rows of the array.  The
 | |
| *>          j-th column of B is stored in the j-th column of the array BB
 | |
| *>          as follows:
 | |
| *>          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
 | |
| *>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
 | |
| *>
 | |
| *>          On exit, the factor S from the split Cholesky factorization
 | |
| *>          B = S**H*S, as returned by ZPBSTF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDBB
 | |
| *> \verbatim
 | |
| *>          LDBB is INTEGER
 | |
| *>          The leading dimension of the array BB.  LDBB >= KB+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is DOUBLE PRECISION array, dimension (N)
 | |
| *>          If INFO = 0, the eigenvalues in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is COMPLEX*16 array, dimension (LDZ, N)
 | |
| *>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
 | |
| *>          eigenvectors, with the i-th column of Z holding the
 | |
| *>          eigenvector associated with W(i). The eigenvectors are
 | |
| *>          normalized so that Z**H*B*Z = I.
 | |
| *>          If JOBZ = 'N', then Z is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1, and if
 | |
| *>          JOBZ = 'V', LDZ >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (3*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i, and i is:
 | |
| *>             <= N:  the algorithm failed to converge:
 | |
| *>                    i off-diagonal elements of an intermediate
 | |
| *>                    tridiagonal form did not converge to zero;
 | |
| *>             > N:   if INFO = N + i, for 1 <= i <= N, then ZPBSTF
 | |
| *>                    returned INFO = i: B is not positive definite.
 | |
| *>                    The factorization of B could not be completed and
 | |
| *>                    no eigenvalues or eigenvectors were computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complex16OTHEReigen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZHBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
 | |
|      $                  LDZ, WORK, RWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBZ, UPLO
 | |
|       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   RWORK( * ), W( * )
 | |
|       COMPLEX*16         AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
 | |
|      $                   Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER, WANTZ
 | |
|       CHARACTER          VECT
 | |
|       INTEGER            IINFO, INDE, INDWRK
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DSTERF, XERBLA, ZHBGST, ZHBTRD, ZPBSTF, ZSTEQR
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       WANTZ = LSAME( JOBZ, 'V' )
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( KA.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDAB.LT.KA+1 ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDBB.LT.KB+1 ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | |
|          INFO = -12
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZHBGV ', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Form a split Cholesky factorization of B.
 | |
| *
 | |
|       CALL ZPBSTF( UPLO, N, KB, BB, LDBB, INFO )
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          INFO = N + INFO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Transform problem to standard eigenvalue problem.
 | |
| *
 | |
|       INDE = 1
 | |
|       INDWRK = INDE + N
 | |
|       CALL ZHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
 | |
|      $             WORK, RWORK( INDWRK ), IINFO )
 | |
| *
 | |
| *     Reduce to tridiagonal form.
 | |
| *
 | |
|       IF( WANTZ ) THEN
 | |
|          VECT = 'U'
 | |
|       ELSE
 | |
|          VECT = 'N'
 | |
|       END IF
 | |
|       CALL ZHBTRD( VECT, UPLO, N, KA, AB, LDAB, W, RWORK( INDE ), Z,
 | |
|      $             LDZ, WORK, IINFO )
 | |
| *
 | |
| *     For eigenvalues only, call DSTERF.  For eigenvectors, call ZSTEQR.
 | |
| *
 | |
|       IF( .NOT.WANTZ ) THEN
 | |
|          CALL DSTERF( N, W, RWORK( INDE ), INFO )
 | |
|       ELSE
 | |
|          CALL ZSTEQR( JOBZ, N, W, RWORK( INDE ), Z, LDZ,
 | |
|      $                RWORK( INDWRK ), INFO )
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZHBGV
 | |
| *
 | |
|       END
 |