235 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			235 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZGETC2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgetc2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgetc2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgetc2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZGETC2( N, A, LDA, IPIV, JPIV, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * ), JPIV( * )
 | |
| *       COMPLEX*16         A( LDA, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZGETC2 computes an LU factorization, using complete pivoting, of the
 | |
| *> n-by-n matrix A. The factorization has the form A = P * L * U * Q,
 | |
| *> where P and Q are permutation matrices, L is lower triangular with
 | |
| *> unit diagonal elements and U is upper triangular.
 | |
| *>
 | |
| *> This is a level 1 BLAS version of the algorithm.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA, N)
 | |
| *>          On entry, the n-by-n matrix to be factored.
 | |
| *>          On exit, the factors L and U from the factorization
 | |
| *>          A = P*L*U*Q; the unit diagonal elements of L are not stored.
 | |
| *>          If U(k, k) appears to be less than SMIN, U(k, k) is given the
 | |
| *>          value of SMIN, giving a nonsingular perturbed system.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1, N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N).
 | |
| *>          The pivot indices; for 1 <= i <= N, row i of the
 | |
| *>          matrix has been interchanged with row IPIV(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] JPIV
 | |
| *> \verbatim
 | |
| *>          JPIV is INTEGER array, dimension (N).
 | |
| *>          The pivot indices; for 1 <= j <= N, column j of the
 | |
| *>          matrix has been interchanged with column JPIV(j).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>           = 0: successful exit
 | |
| *>           > 0: if INFO = k, U(k, k) is likely to produce overflow if
 | |
| *>                one tries to solve for x in Ax = b. So U is perturbed
 | |
| *>                to avoid the overflow.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date June 2016
 | |
| *
 | |
| *> \ingroup complex16GEauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | |
| *>     Umea University, S-901 87 Umea, Sweden.
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZGETC2( N, A, LDA, IPIV, JPIV, INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.8.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     June 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * ), JPIV( * )
 | |
|       COMPLEX*16         A( LDA, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, IP, IPV, J, JP, JPV
 | |
|       DOUBLE PRECISION   BIGNUM, EPS, SMIN, SMLNUM, XMAX
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZGERU, ZSWAP, DLABAD
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           DLAMCH
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DCMPLX, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Set constants to control overflow
 | |
| *
 | |
|       EPS = DLAMCH( 'P' )
 | |
|       SMLNUM = DLAMCH( 'S' ) / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL DLABAD( SMLNUM, BIGNUM )
 | |
| *
 | |
| *     Handle the case N=1 by itself
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          IPIV( 1 ) = 1
 | |
|          JPIV( 1 ) = 1
 | |
|          IF( ABS( A( 1, 1 ) ).LT.SMLNUM ) THEN
 | |
|             INFO = 1
 | |
|             A( 1, 1 ) = DCMPLX( SMLNUM, ZERO )
 | |
|          END IF
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Factorize A using complete pivoting.
 | |
| *     Set pivots less than SMIN to SMIN
 | |
| *
 | |
|       DO 40 I = 1, N - 1
 | |
| *
 | |
| *        Find max element in matrix A
 | |
| *
 | |
|          XMAX = ZERO
 | |
|          DO 20 IP = I, N
 | |
|             DO 10 JP = I, N
 | |
|                IF( ABS( A( IP, JP ) ).GE.XMAX ) THEN
 | |
|                   XMAX = ABS( A( IP, JP ) )
 | |
|                   IPV = IP
 | |
|                   JPV = JP
 | |
|                END IF
 | |
|    10       CONTINUE
 | |
|    20    CONTINUE
 | |
|          IF( I.EQ.1 )
 | |
|      $      SMIN = MAX( EPS*XMAX, SMLNUM )
 | |
| *
 | |
| *        Swap rows
 | |
| *
 | |
|          IF( IPV.NE.I )
 | |
|      $      CALL ZSWAP( N, A( IPV, 1 ), LDA, A( I, 1 ), LDA )
 | |
|          IPIV( I ) = IPV
 | |
| *
 | |
| *        Swap columns
 | |
| *
 | |
|          IF( JPV.NE.I )
 | |
|      $      CALL ZSWAP( N, A( 1, JPV ), 1, A( 1, I ), 1 )
 | |
|          JPIV( I ) = JPV
 | |
| *
 | |
| *        Check for singularity
 | |
| *
 | |
|          IF( ABS( A( I, I ) ).LT.SMIN ) THEN
 | |
|             INFO = I
 | |
|             A( I, I ) = DCMPLX( SMIN, ZERO )
 | |
|          END IF
 | |
|          DO 30 J = I + 1, N
 | |
|             A( J, I ) = A( J, I ) / A( I, I )
 | |
|    30    CONTINUE
 | |
|          CALL ZGERU( N-I, N-I, -DCMPLX( ONE ), A( I+1, I ), 1,
 | |
|      $               A( I, I+1 ), LDA, A( I+1, I+1 ), LDA )
 | |
|    40 CONTINUE
 | |
| *
 | |
|       IF( ABS( A( N, N ) ).LT.SMIN ) THEN
 | |
|          INFO = N
 | |
|          A( N, N ) = DCMPLX( SMIN, ZERO )
 | |
|       END IF
 | |
| *
 | |
| *     Set last pivots to N
 | |
| *
 | |
|       IPIV( N ) = N
 | |
|       JPIV( N ) = N
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZGETC2
 | |
| *
 | |
|       END
 |